

Functional Servicing and Stormwater Management Report

Losani Homes Fifth Wheel Development Town of Grimsby

R.J. Burnside & Associates Limited 1465 Pickering Parkway Suite 200 Pickering ON L1V 7G7 CANADA

October 2019 300040159.0000



#### Losani Homes

Functional Servicing and Stormwater Management Report October 2019

## **Distribution List**

| No. of | PDF (via | Organization Name             |  |
|--------|----------|-------------------------------|--|
| Hard   | Email)   |                               |  |
| Copies |          |                               |  |
| 2      | Yes      | Losani Homes                  |  |
| 6      | Yes      | MHBC                          |  |
| 0      | Yes      | Chamberlain Architects        |  |
| 0      | Yes      | Geoprocess                    |  |
| 0      | Yes      | Shoreplan Engineering Limited |  |

## **Record of Revisions**

| Revision | Date         | Description                                                 |
|----------|--------------|-------------------------------------------------------------|
| 0        | June 1, 2018 | Issued for Draft Plan Application                           |
| 1        | October 2019 | Re-issued 2 <sup>nd</sup> Submission Draft Plan Application |

### **R.J. Burnside & Associates Limited**

**Report Prepared By:** 



Adam Crookes, P.Eng. Project Engineer AC:cv



Steven A. Hader, P.Eng. Senior VP, Land Development

Report Reviewed By:

## **Table of Contents**

| 1.0    | Intro<br>1.1 | <b>ductior</b><br>Existin | n and Planning Context<br>g Site Conditions | <b>1</b><br>1 |
|--------|--------------|---------------------------|---------------------------------------------|---------------|
|        | 1.2          | Site So                   | pils                                        | 1             |
| 2.0    | Wate         | er Distri                 | bution                                      | 3             |
| 3.0    | Wast         | tewater                   | Servicing                                   | 4             |
|        | 3.1          | Local S                   | Servicing                                   | 4             |
|        | 3.2          | Regior                    | nal Servicing                               | 4             |
|        |              | 3.2.1                     | Roberts Road SPS                            | 4             |
|        |              | 3.2.2                     | Lake Street SPS                             | 5             |
|        |              | 3.2.3                     | Baker Street WWTP                           | 5             |
|        |              | 3.2.4                     | MSP Update                                  | 5             |
| 4.0    | ,Stor        | m Drai                    | nage                                        | 6             |
|        | 4.1          | Existin                   | g Drainage Conditions                       | 6             |
|        | 4.2          | Propos                    | sed Drainage                                | 6             |
|        |              | 4.2.1                     | Stormwater Quantity Control                 | 6             |
|        |              | 4.2.2                     | Stormwater Quality Control                  | 6             |
|        |              | 4.2.3                     | Minor System Drainage                       | 7             |
|        |              | 4.2.4                     | External Drainage                           | 8             |
|        |              | 4.2.5                     | Watercourse                                 | 8             |
|        |              | 4.2.6                     | Major System Drainage                       | 9             |
|        |              | 4.2.7                     | Foundation Drainage                         | 10            |
| 5.0    | Site         | Grading                   | 9                                           | .11           |
| 6.0    | Road         | d Desig                   | n                                           | 12            |
|        | 6.1          | Public                    | Roads                                       | 12            |
|        | 6.2          | Private                   | e Roads                                     | 12            |
|        | 6.3          | North \$                  | Service Road                                | 12            |
| 7.0    | Eros         | ion and                   | I Sediment Control Plan                     | 13            |
| 8.0    | Oper         | ations                    | and Maintenance                             | .14           |
| 9.0    | Cond         | lusion                    | S                                           | .15           |
| 10.0   | Refe         | rences                    |                                             | 16            |
|        |              |                           |                                             | -             |
| Tables | 5            |                           |                                             |               |

| Table 1: Existing Culverts                             | 6 |
|--------------------------------------------------------|---|
| Table 2: Oil and Grit Separator Sizing and TSS Removal | 7 |

#### Losani Homes

Functional Servicing and Stormwater Management Report October 2019

## Appendices

Appendix A Figures

- Appendix B Drawings
- Appendix C Sanitary and Storm Sewer Design Sheets Regional Sewer Infrastructure

Appendix D Oil and Grit Separator Design

Appendix E Watercourse Hydraulic Analysis

#### Losani Homes

Functional Servicing and Stormwater Management Report October 2019

#### Disclaimer

Other than by the addressee, copying or distribution of this document, in whole or in part, is not permitted without the express written consent of R.J. Burnside & Associates Limited.

In the preparation of the various instruments of service contained herein, R.J. Burnside & Associates Limited was required to use and rely upon various sources of information (including but not limited to: reports, data, drawings, observations) produced by parties other than R.J. Burnside & Associates Limited. For its part R.J. Burnside & Associates Limited has proceeded based on the belief that the third party/parties in question produced this documentation using accepted industry standards and best practices and that all information was therefore accurate, correct and free of errors at the time of consultation. As such, the comments, recommendations and materials presented in this instrument of service reflect our best judgment in light of the information available at the time of preparation. R.J. Burnside & Associates Limited, its employees, affiliates and subcontractors accept no liability for inaccuracies or errors in the instruments of service provided to the client, arising from deficiencies in the aforementioned third-party materials and documents.

R.J. Burnside & Associates Limited makes no warranties, either express or implied, of merchantability and fitness of the documents and other instruments of service for any purpose other than that specified by the contract.

## 1.0 Introduction and Planning Context

R.J. Burnside & Associates Limited (Burnside) has been retained by Losani Homes (Losani) to prepare a Functional Servicing and Stormwater Management Report (FSR/SWM) in support of the proposed residential development.

The Losani plan of subdivision is proposed to be located on Lot 16 of Part of Broken Front Concession, and Lot 17 of Concession 1, in the Town of Grimsby, Regional Municipality of Niagara. This subject site, generally located east of Casablanca Boulevard and north of the North Service Road, is approximately 6.9 hectares (ha) in area and is bounded by the North Service Road to the south and west, an existing residential lot to the east, and Lake Ontario to the north. Refer to Figure 1 in Appendix A for the site location. The proposed development includes 1,276 units consisting of a combination of back to back townhomes, on-street townhouses, and multi-story apartment style condominiums with 7500 m<sup>2</sup> employment/commercial space located on the first floor.

Portions of the site will be dedicated to the Town including Wintston Road and the open spaces associated with the watercourses and Lake Ontario shoreline. The Lake Ontario shoreline will be improved with revetment walls and public amenities. The proposed Site Plan is included in Appendix A.

## 1.1 Existing Site Conditions

The site is located approximately 2 km north of the Niagara Escarpment and is generally flat, gently draining northward towards Lake Ontario. The site is situated in the former location of the Fifth Wheel Truck Stop. Two existing buildings located within the subject lands will be demolished. A watercourse roughly bisects the site and outlets to Lake Ontario. The east portion of the site is vacant. Much of the site has been cleared, and the remainder is predominantly landscaped or naturally vegetated.

## 1.2 Site Soils

Soil-Mat Engineering & Consultants Ltd. completed a geotechnical investigation for the subject site, dated January 15, 2016. The Geotechnical Report can be made available if necessary.

A total of 14 boreholes were drilled on site as part of the geotechnical investigation, and an additional 17 boreholes as part of a Phase II Environmental Site Assessment.

Topsoil with an approximate thickness of 0.6 m was observed in formerly landscaped areas of the site. Silty clay or silty sand fill was observed beneath the pavement structure, at depths ranging from 1.1 to 1.8 m. In general, the site is comprised of native

#### Losani Homes

Functional Servicing and Stormwater Management Report October 2019

silty clay proven to depths ranging from 3.5 to 11.3 m below grade. Static groundwater depth was reported from 3 to 6 m below grade, fluctuating up to 1.5 m between summer and winter.

Queenston Shale was encountered beneath the silty clay in several boreholes at varying depths from 3.6 to 10.7 m below grade. The report notes that the Shale is shallowest along the south and west areas of the site, stepping down to the east and north.

Functional Servicing and Stormwater Management Report October 2019

## 2.0 Water Distribution

The proposed water network will be designed to current Region of Niagara, Town of Grimsby and MECP (formerly MOECC) criteria and specifications. In the absence of Town of Grimsby Design Standards, the domestic water and fire flow demands will be calculated using the MECP guidelines subject to the approval of the Town of Grimsby. The anticipated water demand based on 300 L/cap/day is 1.012 MLD.

The site will be serviced by a new looped watermain that will be connected in two locations to an existing 300 mm watermain situated on the North Service Road. The proposed water distribution system is depicted on Drawing C101 (Appendix B). Appropriate valving and hydrant placement will be determined at the detailed design stage.

Functional Servicing and Stormwater Management Report October 2019

## 3.0 Wastewater Servicing

## 3.1 Local Servicing

The proposed wastewater collection system will be designed and constructed to current Region of Niagara, Town of Grimsby and MOECC criteria and specifications. Preliminary sewer sizing has carried out based on the following assumptions:

- Residential flow rate 275 litres per capita per day
- Infiltration 0.286 litres per second per hectare
- Peaking Factor Harmon Peaking Factor Formula
- Population Densities
  - Townhouse Units 3.1 people per unit
  - Condo Apartment Units-2.0 people per unit (1-3 bedroom units)
  - Retail/Commercial Space 200 people/ha

The preliminary design sheet is provided in Appendix C. The peak dry weather flow leaving the site is estimated to be 30.3 L/s and the peak wet weather flow is estimated to be 31.7 L/s. The site will be serviced by a network of local sewers that will outlet in several locations to an existing 525 mm trunk sewer located with the North Service Road right of way. The site is designed such that all of the units can be serviced by gravity. Drawing C301(Appendix B) presents the preliminary sanitary servicing scheme for the site and drainage areas.

## 3.2 Regional Servicing

The Niagara Region Master Servicing Plan (2016) outlines Regional sanitary serving requirements through 2041. The site is tributary to the following Regional infrastructure:

- 1. Roberts Road Sanitary Pumping Station (SPS)
- 2. The Lake Street SPS
- 3. The Baker Road Wastewater Treatment Plant (WWTP)

An excerpt from the 2016 Master Servicing Plan (MSP) showing a schematic of the collection system has been included in Appendix C.

### 3.2.1 Roberts Road SPS

The MSP concluded that the Roberts Road SPS did not require upgrades although there is a very minor theoretical deficiency (2.2 L/s) in the 2041 timeframe. The Roberts Road SPS has a capacity of 256 L/s. In 2014, the existing peak wet weather flow in the Roberts Road SPS was 187.2 L/s. The MSP assumes a population growth of 5,560 (residential and non-residential combined) for the Roberts Road catchment. This project

Functional Servicing and Stormwater Management Report October 2019

estimates to contribute ~2,750 in population which depends on the combination of 1,2 and 3 bedroom unit types. The current operating data for the Roberts Road pumping station was not readily available at the time this report was prepared.

## 3.2.2 Lake Street SPS

The MSP identifies required improvements to the Lake Street SPS. In 2014, the MSP reported a current peak wet weather flow of 404 L/s compared to the design capacity of 325 L/s. Through discussions with Niagara Region staff it is understood that the Lake Street SPS is currently planned to be upgraded in 2021.

## 3.2.3 Baker Street WWTP

The MSP identifies upgrades to the Baker Road WWTP before 2041. The MSP identified an average daily flow of 20.5 MLD and a capacity of 32.5 MLD in 2014. The proposed development is expected to increase the average daily flow to the WWTP by about 0.82 MLD.

## 3.2.4 MSP Update

In July 2019, Niagara Region issued and RFP for updates to the 2009 Pollution Prevention and Control Plan and the 2016 Waste Water Master Plan specifically relating to the Baker Road WWTP. This new study will revisit and update the findings of the previous studies as it relates to extraneous flows, accommodation of future growth and capital needs. These studies will input to an update to the 10-year capital plan in support of the 2020 capital works budget.

## 4.0 Storm Drainage

## 4.1 Existing Drainage Conditions

The subject lands are located within the Lake Ontario South Shore Watershed and the Niagara Peninsula Conservation Authority's (NPCA) Grimsby Watershed Planning Area. Although the topography of the site is relatively flat outside of the shoreline area, onsite overland drainage is generally directed northward, towards Lake Ontario.

The subject lands contain an unnamed watercourse which bisects the site. The watercourse is a direct tributary to Lake Ontario. It conveys flows from approximately 105.6 ha of external lands to the southern property boundary via a series of culverts under the South Service Road, the Queen Elizabeth Way and the North Service Road. The existing culvert locations are shown on Figure 2 (See Appendix A) and summarized in Table 1. The 100-year peak discharge in the watercourse is 6.04 m<sup>3</sup>/s (Odan/Detech Group, 2005).

| Road Crossing      | Existing Culvert Size and Type |
|--------------------|--------------------------------|
| South Service Road | 2.44 x 1.22 m concrete box     |
| QEW                | 3.35 x 1.22 m concrete box     |
| North Service Road | 2.44 x 1.22 m concrete box     |

#### **Table 1: Existing Culverts**

Local runoff from the site sheet drains either directly to Lake Ontario or to the existing watercourse.

## 4.2 **Proposed Drainage**

### 4.2.1 Stormwater Quantity Control

The site is directly adjacent to Lake Ontario and therefore onsite quantity controls are not required.

### 4.2.2 Stormwater Quality Control

Stormwater quality control will be provided for the site to Enhanced Level Control as defined by the MOECC guidelines to achieve a total suspended solids removal rate of 80%.

Functional Servicing and Stormwater Management Report October 2019

Quality control for the majority of the site will be accomplished through the use of Oil Grit Separators (OGS). Five oil grit separators are proposed in locations indicated on Drawing C302 (Appendix B). Preliminary OGS sizing calculations are provided in Appendix D.

Several areas within the site will discharge untreated/uncontrolled runoff as the flows are deemed clean. These areas are:

- The 1.56 ha Open Space Block Adjacent to Lake Ontario (Areas 8.1, 8.2, 8.3)
- The 0.21 ha Open Space Channel Block that bisects the site (Area 8.4)
- 1.62 ha of rooftops and landscaped amenity areas (Areas 2.4, 2.5, 6.1, 6.2, 7.1, 7.2)

Table 2 summarizes the OGS sizing and describes the roof, open space, and amenity areas which are not treated by an OGS as the runoff has been deemed clean.

| Catchment      | Drainage  | Runoff      | Imperviousness |           | OGS  |
|----------------|-----------|-------------|----------------|-----------|------|
| IDS            | Area (na) | Coefficient | (%)            | Ireatment | Туре |
|                |           |             |                |           | STC  |
| 1.1, 1.2, 1.3  | 1.37      | 0.74        | 77.1           | OGS1      | 4000 |
|                |           |             |                |           | STC  |
| 2.1, 2.2, 2.3  | 1.39      | 0.90        | 100.0          | OGS2      | 5000 |
|                |           |             |                | Roof and  |      |
|                |           |             |                | Amenity   |      |
| 2.4, 2.5       | 0.58      | 0.67        | 100.0          | Area      | N/A  |
|                |           |             |                |           | STC  |
| 3.1, 3.2       | 0.88      | 0.90        | 100.0          | OGS3      | 3000 |
|                |           |             |                |           | STC  |
| 4.1, 4.2       | 0.69      | 0.90        | 100.0          | OGS4      | 2000 |
|                |           |             |                |           | STC  |
| 5.1, 5.2, 5.3  | 0.6       | 0.90        | 100.0          | OGS5      | 2000 |
| 6.1, 6.2       | 0.5       | 0.90        | 100.0          | Roof      | N/A  |
| 7.1, 7.2       | 0.54      | 0.90        | 100.0          | Roof      | N/A  |
| 8.1, 8.2, 8.3, |           |             |                | Open      |      |
| 8.4            | 1.77      | 0.67        | 67.8           | Space     | N/A  |
| TOTAL          | 8.32      | 0.81        | 87.1           |           |      |

Table 2: Oil and Grit Separator Sizing and TSS Removal

## 4.2.3 Minor System Drainage

The local on-site storm sewers will be sized to convey the 5-year storm. Drawing C302 (Appendix B) presents the drainage areas and proposed storm sewer network.

A design sheet for storm drainage system is provided in Appendix C.

Minor runoff from the majority of the site will be conveyed by a series of storm sewers to four (4) local inlets to the watercourse located in the centre of the site.

Functional Servicing and Stormwater Management Report October 2019

Runoff from the remainder of the site and the North Service Road will be conveyed within a 600 mm diameter sewer located within the proposed public road that will outlet directly to Lake Ontario.

### 4.2.4 External Drainage

#### External Area 1

Drainage from this 105.1 ha area is conveyed through the existing  $3.35 \times 1.22$  m culvert under the QEW and will be conveyed to the site via proposed twin 2.44 x 1.22 m box culverts under the North Service Road. There is currently only a single 2.44 x 1.22 box crossing the North Service Road.

The twin 2.44 x 1.22 culverts have been sized to convey the 100-year peak flow rate of  $6.04 \text{ m}^3$ /s. This peak flow was documented in a 2005 report prepared by the Odan/Detech Group (Refer to Figure 2 for external drainage area details).

A hydraulic grade line analysis of the twin culverts was conducted in HEC-RAS to determine water levels during the 100-year event. The analysis, summarized in Section 4.2.5 and detailed in Appendix E, confirms that the proposed twin 2.44 x 1.22 m culverts do not cause any backwater effects on the existing QEW culvert (refer to Appendix E).

### **External Area 2**

This drainage area consists of a 4.65 ha undeveloped parcel located west of the site and across from North Service Road. Runoff from this area is captured by a drainage ditch running north along the west side of North Service Road and is conveyed under the road by an existing 750 mm diameter culvert which discharges into Lake Ontario. Based on the Town of Grimsby improvement plans for North Service Road (Plan Reference No. PWC1-02-320102), the ditch along the road will be improved and the existing culvert will be replaced by an 800 mm diameter CSP culvert and the drainage pattern will be maintained. Refer to Drawing C302 (Appendix B).

### **External Area 3**

This 1.64 ha area consists of the portion of North Service Road fronting the project. The storm sewer system for the site has been designed to convey runoff from this area to the site's outfalls, which discharge the flows to Lake Ontario after being treated by the oil grit separators. Refer to Drawing C302 (Appendix B).

#### 4.2.5 Watercourse

The existing watercourse is proposed to be modified to a trapezoidal channel with a 7.5 m base width and 3:1 side slopes and bed slopes ranging from 0.5% to 1.5%. It will

#### Losani Homes

Functional Servicing and Stormwater Management Report October 2019

have sufficient capacity to convey the major runoff from the site and the 6.04 m<sup>3</sup>/s 100-year runoff from the External Drainage Area 1.

Hydraulic capacity calculations for the proposed channel are included in Appendix E. A low flow channel is proposed to convey runoff from frequent storm events. The low flow channel will have a base width of 0.5 m, 2:1 side slopes and a depth of 0.4 m.

Twin 1.80 x 0.90 m culverts are proposed at a local road crossing approximately halfway along the longitudinal length of the watercourse.

A hydraulic grade line analysis of the watercourse during the 100-year event was performed in HEC-RAS from the downstream end of the watercourse to the upstream end of the existing  $3.35 \times 1.22$  m culvert under the QEW. The analysis included the two proposed culvert crossings (twin 2.44 x 1.22 m box culverts under North Service Road and twin 1.80 x 0.90 m box culverts at the local proposed watercourse crossing) as well as the existing crossing under the QEW. Results of the analysis confirmed that there is no impact on the  $3.35 \times 1.22$  m culvert under the QEW at the outlet south of North Service Road. The 100-year peak flow can be conveyed with no surcharge of the existing QEW culvert or the proposed 2.44 x 1.22 m culverts. Details of the hydraulic grade line analysis are included in Appendix E.

At the downstream end of the watercourse at the location of the revetment wall, an approximate 2 m elevation drop is required to reach the lake elevation. To accommodate this, the revetment wall will be integrated with a series armourstone drops and plunge pools, designed to dissipate the energy from the watercourse flow and eliminate scour as the watercourse discharges to Lake Ontario. A conceptual design of the armourstone step outfall is included on drawing 203.

At the detailed design stage, a functional design of the open channel will be provided to confirm final details of the open channel and connection to the lake.

#### 4.2.6 Major System Drainage

Major system flows from the site will be conveyed overland within the public right of way and will outlet to Lake Ontario via the modified watercourse traversing the site.

The direction of major system flows are shown on the Grading and Storm Drainage Area plans C201 and C302 located in Appendix B.

It is not anticipated that any major system flows will originate from the QEW as the highway ditches will convey flows away from the site.

### 4.2.7 Foundation Drainage

The site design can provide for the gravity drainage of foundations to at least the P1 level (first sub surface parking level) or elevation 279.70. The average water surface elevation of the lake is approximately 275 m. The extent of sub surface parking is yet to be determined, as such, foundation drainage and groundwater impacts are yet to be assessed.

## 5.0 Site Grading

Site grading design is depicted on Drawing C201 (Appendix B) and sections are provided on Drawing C202 (Appendix B), and addresses the following constraints:

- Conforms to Town of Grimsby's grading criteria.
- Matches existing boundary grading conditions (interim condition).
- Considers shoreline setbacks and grading as outlined in Shoreline Hazards Assessment by Shoreplan Engineering (Jan 14, 2016).
- Provides urbanization of the North Service Road along the frontage of the site as well as Winston Road.
- Provides overland flow route to discharge major flows to Lake Ontario.
- Provides minimum cover to allow the installation of a storm sewer network which discharges to Lake Ontario as well as the sanitary sewer network which discharges to the trunk sewer on North Service Road.
- Provides an open channel with stable 3:1 side slopes and 7.0 m buffers for conveyance of external drainage.

## 6.0 Road Design

The site will be serviced by a combination of private roads and driveways as well as public roads. A new public road (Winston Road) is proposed to loop through the site and connect to the North Service Road in two locations. The road pattern is depicted on Drawing C101 (Appendix B).

## 6.1 Public Roads

Winston Road is proposed to be constructed with three unique cross sections.

The public road cross sections have the following design elements:

- Crowned or super-elevated with a minimum 2% cross fall
- Curb and Gutter as per OPSD 600.040
- 1.5 m wide sidewalk on at least one side
- Two driving lanes with a minimum of 6.0 m of total pavement
- Layby parking with a minimum width of 2.5 m or perpendicular parking with a depth of 6 m.

Typical sections for the Winston Road right-of-way are provided on Drawing C202 (Appendix B).

## 6.2 Private Roads

The proposed private roads will be designed in conjunction with the Site Plan Application. The traffic study that accompanies this application addresses intersection spacing for the key driveway accesses that will serve the condominium development.

## 6.3 North Service Road

The Town of Grimsby has provided design drawings showing an urbanization of the North Service Road to the west of this project. It is anticipated that a portion of the North Service Road along the site frontage will be urbanized. The proposed grading design makes accommodation for urbanization of the north side of the north Service Road.

The ultimate improvements to the North Service Road will likely be determined as part of a traffic study supporting this application.

Accommodation for drainage improvements for the entire width of the North Service Road right of way (now 22.5 m) across the site frontage have been made in the drainage design for the development. Functional Servicing and Stormwater Management Report October 2019

## 7.0 Erosion and Sediment Control Plan

The Erosion and Sediment Control Plan for the site will be designed in conformance with the Town of Grimsby and NPCA guidelines. Erosion and sediment control will be implemented for all construction activities including topsoil stripping, foundation excavation and stockpiling of material.

The following erosion and sediment control measures will be installed and maintained during construction:

- Prior to grading, a temporary sediment control fence will be placed around perimeter of all areas that will be disturbed.
- Sediment traps will be provided.
- Gravel mud mats will be provided at all construction access points to minimize off site tracking of sediments.
- Sediment control ponds may be required depending on the total area of the disturbed site and number of natural outlets.
- All temporary erosion and sediment control measures will be routinely inspected and repaired during construction. Temporary controls will not be removed until the areas they serve are restored and stable.

A preliminary Erosion and Sediment Control Design is included as Drawing C401 (Appendix B).

Functional Servicing and Stormwater Management Report October 2019

## 8.0 **Operations and Maintenance**

Required operation and maintenance activities for the oil grit separators are identified in this section as per Table 6.2 from the MECP SWM Manual. Once the storm system has been approved for operation, the inspection and maintenance procedures described in this section must be followed. Initially, this will entirely be the responsibility of the developer until OGS-X, OGS-Y, and OGS-Z are assume by the Town of Grimsby. OGS-A and OGS-B are to remain privately owned, and maintenance will remain the responsibility of the owner.

Inspections should occur at regular intervals, and the oil grit separators must be cleaned out as recommended by the manufacturer. Cleanout frequency will be based on site conditions, for example, during construction and post-construction when the soils are initially unstable there is likely to be more suspended solids that end up in the oil grit separators, requiring more frequent cleanout. Similarly, the application of road sand in the winter may cause additional sediment build-up, which would lead to a higher cleanout frequency.

All outfalls (to Lake Ontario and to the watercourse) should be inspected for signs of erosion. Inspections should be carried out during construction and on an annual basis or following large rainfall events. Any problems should be identified and mitigated immediately.

Functional Servicing and Stormwater Management Report October 2019

## 9.0 Conclusions

This report has presented a functional design of site servicing and grading at the proposed development. Further refinement will be performed at the detailed design stage. Functional design for the proposed development can be summarized as follows:

- The proposed storm drainage system will be designed in compliance with the NPCA guidelines, MECP guidelines, and the Town of Grimsby Design Standards.
- Stormwater quantity control is not required as the site is adjacent to Lake Ontario.
- Stormwater quality control will be provided to an enhanced level of control through five oil and grit separators.
- Two outlets to Lake Ontario are proposed to provide local drainage of the internal lands, and conveyance of runoff from external lands.
- External drainage will be conveyed through the re-engineered watercourse. A functional design of the open channel will be provided to the agencies for review to confirm final details at the detailed design stage.
- Water servicing will be accomplished by connection to the existing 300 mm diameter watermain along North Service Road.
- Sanitary servicing will be accomplished by connection to an existing 525 mm diameter sanitary trunk sewer located within the North Service Road.
- The site is tributary to the Roberts Road SPS, the Lake Street SPS and the Baker Street WWTP. An MSP update has been commissioned by Niagara Region for lands that are tributary to the Bake Street WWTP.
- The site will be accessed by public roads and private driveways site entrances from North Service Road and Winston Road.
- Winston Road will be developed as a public road with layby and perpendicular parking.

Functional Servicing and Stormwater Management Report October 2019

## 10.0 References

- "Stormwater Management Study Q.E.W. From Fifty Road to East of Casablanca Boulevard", prepared for Ontario Ministry of Transportation by Marshall Macklin Monaghan Limited, September 1994
- "Stormwater Management Guidelines", prepared for Niagara Peninsula Conservation Authority by AECOM, March 2010
- "Stormwater Management Planning and Design Manual", prepared by Ministry of the Environment, 2003
- "Shoreline Hazard Assessment: Fifth Wheel Truck Stop Property", prepared by Shoreplan Engineering Limited, January 2016
- "Geotechnical Investigation: Proposed Residential Development, Fifth Wheel 398 North Service Road", prepared for Losani Homes by Soil-Mat Engineers & Consultants Limited, January 2016
- "Loblaw Properties Ltd. Casablanca Blvd and South Service Rd, Commercial Development, Final Engineering Report", prepared for Loblaw Properties Ltd. by The Odan/Detech Group Inc., November 2005

## Appendix A

## Figures

Site Plan Figure 1: Site Location Figure 2: External Drainage Area Plan



:: G:\040159 - Losani Fifth Whee\Drawings\06\_Figures\FIG 1.dwg Date Plotted: May 16, 2018 - 11:52 AM



Scale 1:10000 Project No.

300040159

-ifth 20



| PARKING SCHEDULE - BUILDING A &                                                                    | В              |
|----------------------------------------------------------------------------------------------------|----------------|
| Туре                                                                                               | Count          |
| U/G P1                                                                                             |                |
| 4.5 m with transfer space- Accessible                                                              | 11             |
| TYPICAL PARKING SPACE                                                                              | 182            |
| TYPICAL PARKING SPACE - TANDEM                                                                     | 8              |
| U/G P2                                                                                             | 201            |
| 4.5 m with transfer space- Accessible                                                              | 11             |
| TYPICAL PARKING SPACE                                                                              | 192            |
| TYPICAL PARKING SPACE - PARALLE PARKING                                                            | 1              |
| TYPICAL PARKING SPACE - TANDEM                                                                     | 8              |
| U/G P3                                                                                             | 212            |
| 4.5 m with transfer space- Accessible                                                              | 12             |
| TYPICAL PARKING SPACE                                                                              | 243            |
| TYPICAL PARKING SPACE - TANDEM                                                                     | 2              |
|                                                                                                    | 257            |
|                                                                                                    | 670            |
| 491 UNITS (22 STOREYS) = 491 TOTAL<br>PARKING REQUIREMENTS<br>1.25 SPACES FOR DWELLING UNIT        |                |
| 491 x 1.25 = 613.75                                                                                |                |
| 614 PARKING SPACES REQUIRED IN TO                                                                  | TAL            |
| ONE ACCESSIBLE PARKING SPACE SHA<br>PROVIDED PER 20 PARKING SPACES (C<br>TOWARDS PARKING REQUIRED) | ALL BE<br>OUNT |
| 614 / 20 = <u>30.70 (31)</u> ACCESSIBLE PARKII                                                     | NG             |
|                                                                                                    |                |

|                   | PARKING SCHEDULE - BUILDING E & F              |            |                              |                 | PARKING SCHEDULE -<br>BUILDING H, I, & J |                    |
|-------------------|------------------------------------------------|------------|------------------------------|-----------------|------------------------------------------|--------------------|
|                   | Туре                                           | Count      |                              |                 | Туре                                     | Count              |
|                   |                                                |            |                              |                 |                                          |                    |
|                   | U/G P1                                         | 10         | 7                            |                 | T/O GROUND FLOOP                         | 200                |
|                   |                                                | 13         | -                            |                 | SPACE                                    | 28                 |
|                   |                                                | 2/0        | _                            |                 |                                          | 28                 |
|                   | TTFICAL FARMING SFACE - FARALLE FARMING        | 286        |                              |                 |                                          | 28                 |
|                   | LI/G P2                                        | 200        |                              |                 |                                          |                    |
|                   | 4.5 m with transfer space- Accessible          | 13         | 7                            |                 |                                          |                    |
|                   | TYPICAL PARKING SPACE                          | 270        | _                            |                 |                                          |                    |
|                   | TYPICAL PARKING SPACE - PARALLE PARKING        | 3          | -                            |                 |                                          |                    |
|                   |                                                | 286        |                              |                 |                                          |                    |
|                   | U/G P3                                         |            |                              |                 |                                          |                    |
|                   | TYPICAL PARKING SPACE                          | 69         | 7                            |                 |                                          |                    |
|                   | <b>TYPICAL PARKING SPACE - PARALLE PARKING</b> | 1          | -                            |                 |                                          |                    |
|                   |                                                | 70         |                              |                 |                                          | _                  |
|                   |                                                | 642        |                              |                 | BUILDING H, I &                          | <u>J</u>           |
|                   |                                                |            |                              |                 | 14  UNITS = 14                           |                    |
|                   | BUILDING E                                     |            | BUILDING F                   |                 |                                          |                    |
| = 177 TOTAL       | 151 UNITS (12 STOREYS) = 151 TOTAL             |            | 243 UNITS (14 STOREYS)       | = 243 TOTAL     |                                          | <b>`</b>           |
|                   |                                                |            |                              |                 |                                          | •                  |
| S                 | PARKING REQUIREMENTS                           |            | PARKING REQUIREMENT          | S               |                                          |                    |
|                   | 1.25 SPACES FOR DWELLING UNIT                  |            | 1.25 SPACES FOR DWELL        |                 |                                          |                    |
|                   |                                                |            |                              |                 | $14 \times 2 = 28$                       |                    |
|                   | 151 x 1.25 = 188.75                            |            | 243 X 1.25 = 303.75          |                 | =                                        |                    |
|                   |                                                |            |                              |                 | 28 PARKING SP                            | ACES               |
| EQUIRED IN TOTAL  | 189 PARKING SPACES REQUIRED IN TO              | <u>ral</u> | 304 PARKING SPACES RE        |                 |                                          |                    |
|                   |                                                |            |                              |                 |                                          |                    |
| NG SPACE SHALL BE | ONE ACCESSIBLE PARKING SPACE SHA               | LL BE      |                              |                 |                                          |                    |
| NG SPACES (COUNT  | PROVIDED PER 20 PARKING SPACES (C              | OUNT       |                              |                 |                                          | FOR                |
| UIRED)            | TOWARDS PARKING REQUIRED)                      |            | (COUNT TOWARDS FARM          |                 | BUILDINGS H I                            | <u>101(</u><br>& I |
|                   |                                                |            | 304 / 20 =15 2 (15) ACCES    | SIRI E PARKING  |                                          |                    |
| SSIBLE PARKING    | 189 / 20 = <u>9.45 (10)</u> ACCESSIBLE PARKING | 3          | <u>10:2 (10)</u> A0020       |                 | PER UNIT = 2709                          | ) sf               |
|                   |                                                |            | EMPLOYMENT= 1 SPACE          | FOR EACH 28     | FLOOR 1 = 655 s                          | f                  |
| FOR EACH 28       | EMPLOYMENT= 1 SPACE FOR EACH 28                |            | SQUARE METERS                |                 | FLOOR 2 = 1027                           | sf                 |
|                   | SQUARE METERS                                  |            |                              |                 | FLOOR 3 = 1027                           | sf                 |
|                   |                                                |            | <b>EMPOLYMENT= 2127 / 28</b> | = 76 PARKING    |                                          |                    |
| 1/28 = 30 PARKING | EMPLOYMENT = 2035sm / 28 = /3 PARKI            | NG         | SPACES REQUIRED              |                 |                                          |                    |
|                   | SPACES REQUIRED                                |            |                              |                 |                                          |                    |
|                   |                                                |            |                              |                 |                                          |                    |
| TOTAL REQUIRED    |                                                |            | TOTAL REQUIRED               | TOTAL REQUIRED  |                                          |                    |
| 257 + 251 = 508   |                                                |            | 304+76 = 380                 | 262 + 380 = 642 |                                          |                    |
|                   | 109 + 73 = 262                                 |            |                              |                 |                                          |                    |

| SI                 | TE STATISTICS - E      | BLOCK 4                |      |
|--------------------|------------------------|------------------------|------|
| DESCRIPTION        | AREA (SM)              | AREA (SF)              | PERC |
| BUILDING FOOTPRINT |                        |                        |      |
| BUILDING E         | 2370.38 m <sup>2</sup> | 25515 ft <sup>2</sup>  | 1    |
| BUILDING F         | 2877.86 m <sup>2</sup> | 30977 ft <sup>2</sup>  | 1    |
| TOWNHOUSES H,I,J   | 1339.07 m <sup>2</sup> | 14414 ft <sup>2</sup>  | -    |
|                    | 6587.32 m <sup>2</sup> | 70905 ft <sup>2</sup>  | 3    |
| HARD LANDSCAPE     |                        |                        |      |
| ASPHALT            | 3565.92 m <sup>2</sup> | 38383 ft <sup>2</sup>  | 2    |
| CURB               | 199.16 m <sup>2</sup>  | 2144 ft <sup>2</sup>   |      |
| SIDEWALK           | 1129.50 m <sup>2</sup> | 12158 ft <sup>2</sup>  | (    |
|                    | 4894.58 m <sup>2</sup> | 52685 ft <sup>2</sup>  | 2    |
| SOFT LANDSCAPE     |                        |                        |      |
| GRASS              | 4552.36 m <sup>2</sup> | 49001 ft <sup>2</sup>  | 2    |
| PAVERS             | 81.12 m <sup>2</sup>   | 873 ft <sup>2</sup>    | (    |
| PAVERS             | 100.74 m <sup>2</sup>  | 1084 ft <sup>2</sup>   | (    |
| PAVERS             | 121.53 m <sup>2</sup>  | 1308 ft <sup>2</sup>   | (    |
| PAVERS             | 306.81 m <sup>2</sup>  | 3302 ft <sup>2</sup>   |      |
| PAVERS             | 228.11 m <sup>2</sup>  | 2455 ft <sup>2</sup>   |      |
|                    | 5390.67 m <sup>2</sup> | 58025 ft <sup>2</sup>  | 3    |
|                    | 16872.57 m²            | 181615 ft <sup>2</sup> | 1(   |
|                    |                        |                        |      |



Architects Constructors Managers

## Chamberlain Architect Services Limited 4671 Palladium Way (Unit 1)

Burlington, Ontario. L7M 0W9 CANADA

Phone: 905.631.7777 www.chamberlainIPD.com

| NO. | ISSUED            | DATE          |
|-----|-------------------|---------------|
|     |                   |               |
|     | CLIENT REVIEW     | FEB, 21 2018  |
|     | CLIENT REVIEW     | MARCH 13 2018 |
|     | CLIENT REVIEW     | MARCH 21 2018 |
|     | CLIENT MEETING    | MARCH 26 2018 |
|     | CLIENT REVIEW     | MAY 4TH 2018  |
|     | PARKING DRAWINGS  | MAY 11 2018   |
|     | SITE PLAN OPTION  | MAY 15 2019   |
|     | REVISED SITE PLAN | MAY 12 2019   |
|     | REVISED SITE PLAN | JULY 16 2019  |
|     | CLIENT REVIEW     | AUG, 26 2019  |

#### DO NOT SCALE DRAWINGS. USE ONLY DRAWINGS MARKED "ISSUED FOR CONSTRUCTION", VERIFY CONFIGURATIONS AND DIMENSIONS ON SITE BEFORE BEGINNING WORK, NOTIFY ARCHITECT IMMEDIATELY OF ANY ERRORS, OMISSIONS OR DISCREPANCIES. CHAMBERLAIN ARCHITECT SERVICES LIMITED AND CHAMBERLAIN CONSTRUCTION SERVICES LIMITED AND CHAMBERLAIN CONSTRUCTION SERVICES LIMITED HAVE SIMILAR OWNERSHIP. CHAMBERLAIN ARCHITECT SERVICES LIMITED AS COPYRIGHT. CONSTRUCTING A SUBSTANTIALLY SIMILAR BUILDING WITHOUT PERMISSION MAY INFRINGE THE COPYRIGHT OWNER'S RIGHTS. MAKING MINOR CHANGES TO PLANS DOES NOT NECESSARILY AVOID COPYRIGHT INFRINGEMENT INNOCENT INFRINGEMENT IS NOT A DEFENSE TO COPYRIGHT INFRINGEMENT.

Owner

CLIENT



# LOSANI HOMES

GRIMBSY, ONTARIO

SHEET NAME

SITE PLAN







![](_page_28_Figure_0.jpeg)

| PARKING SCHEDULE - BUILDING E &        | F  |
|----------------------------------------|----|
| Туре                                   |    |
|                                        |    |
| /G P1                                  |    |
| 5 m with transfer space- Accessible    | 13 |
| YPICAL PARKING SPACE                   | 27 |
| YPICAL PARKING SPACE - PARALLE PARKING | 3  |
|                                        | 28 |
| /G P2                                  |    |
| 5 m with transfer space- Accessible    | 13 |
| YPICAL PARKING SPACE                   | 27 |
| YPICAL PARKING SPACE - PARALLE PARKING | 3  |
|                                        | 28 |
| /G P3                                  |    |
| YPICAL PARKING SPACE                   | 69 |
| YPICAL PARKING SPACE - PARALLE PARKING | 1  |
|                                        |    |

![](_page_28_Picture_3.jpeg)

![](_page_29_Picture_0.jpeg)

| PARKING SCHEDULE - BUILDING E &        | F  |
|----------------------------------------|----|
| Туре                                   |    |
| /G P1                                  |    |
| 5 m with transfer space- Accessible    | 13 |
| YPICAL PARKING SPACE                   | 27 |
| YPICAL PARKING SPACE - PARALLE PARKING | 3  |
|                                        | 28 |
| /G P2                                  | _  |
| 5 m with transfer space- Accessible    | 13 |
| YPICAL PARKING SPACE                   | 27 |
| YPICAL PARKING SPACE - PARALLE PARKING | 3  |
|                                        | 28 |
| /G P3                                  |    |
| YPICAL PARKING SPACE                   | 69 |
| YPICAL PARKING SPACE - PARALLE PARKING | 1  |
|                                        |    |

![](_page_29_Picture_3.jpeg)

![](_page_30_Picture_0.jpeg)

| J | L |   |          |          |                 | L |           | <br> |         | <br>  |
|---|---|---|----------|----------|-----------------|---|-----------|------|---------|-------|
|   |   |   |          |          |                 |   |           |      |         |       |
|   |   |   |          |          |                 |   |           |      |         |       |
|   |   |   |          |          |                 |   |           |      |         |       |
|   |   |   |          |          |                 |   |           |      |         |       |
|   |   |   |          |          |                 |   |           |      |         |       |
|   |   |   |          |          |                 |   |           |      |         |       |
|   |   |   |          |          |                 |   |           |      |         |       |
|   |   |   |          |          |                 |   |           |      |         |       |
|   |   |   |          |          |                 |   |           |      |         |       |
|   |   |   |          |          |                 |   |           |      |         |       |
|   |   |   |          |          |                 |   |           |      |         |       |
|   |   |   |          |          |                 |   |           |      |         |       |
|   |   |   |          |          |                 |   |           |      |         |       |
|   |   |   |          |          |                 |   |           |      |         |       |
|   |   |   |          |          |                 |   |           |      |         |       |
|   |   |   |          |          |                 |   |           |      |         |       |
| · |   |   |          |          | <br>            |   |           | <br> |         | <br>  |
|   |   |   | RA       | MP TO P2 |                 |   |           |      |         |       |
|   |   |   |          |          | -ui             |   | - 1       |      | 1       |       |
|   |   |   |          |          |                 |   |           |      |         |       |
|   |   | 1 | ST<br>ST |          |                 |   |           |      |         |       |
|   |   |   |          |          |                 |   |           |      | ELEVATO |       |
| · |   |   |          |          | <br> <br> <br>] |   | <br> <br> | <br> |         | <br>  |
|   |   |   |          |          |                 |   |           |      |         |       |
|   |   |   |          |          |                 |   |           |      |         |       |
|   |   |   | ··       |          | <br>            |   |           | <br> |         | <br>· |
|   |   |   |          |          |                 |   |           |      |         |       |
|   |   |   |          |          |                 |   |           |      |         |       |
|   |   |   |          |          |                 |   |           |      |         |       |

| PARKING SCHEDULE - BUILDING E &        | F  |
|----------------------------------------|----|
| Туре                                   |    |
| /G P1                                  |    |
| 5 m with transfer space- Accessible    | 13 |
| YPICAL PARKING SPACE                   | 27 |
| YPICAL PARKING SPACE - PARALLE PARKING | 3  |
|                                        | 28 |
| /G P2                                  |    |
| 5 m with transfer space- Accessible    | 13 |
| YPICAL PARKING SPACE                   | 27 |
| YPICAL PARKING SPACE - PARALLE PARKING | 3  |
|                                        | 28 |
| /G P3                                  |    |
| YPICAL PARKING SPACE                   | 69 |
| YPICAL PARKING SPACE - PARALLE PARKING | 1  |
|                                        |    |

![](_page_30_Figure_3.jpeg)

| Count    |                                                                                                                                               | <image/> <image/> <text><text><text><text><text></text></text></text></text></text>   |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|          |                                                                                                                                               | <form></form>                                                                         |
| <u>F</u> | 019-09-20 4:24:50 PM C:\Users\ccosta\Documents\118004 - 5th Wheel - New Site Plan - Revit 2019 -06-11 - Current_ccosta@chamberlainipd.com.rvt | <text><text><text><text><section-header></section-header></text></text></text></text> |

## Appendix B

## Drawings

| Servicing Plan                    | C101 |
|-----------------------------------|------|
| Grading Plan                      | C201 |
| Sections                          | C202 |
| Plan and Profile                  | C203 |
| Sanitary Drainage Area Plan       | C301 |
| Storm Drainage Ara Plan           | C302 |
| Erosion and Sediment Control Plan | C303 |
|                                   |      |

![](_page_32_Figure_0.jpeg)

![](_page_32_Figure_1.jpeg)

040159

0 10

Scale 1:750

SAN-F S INV=79.30

0

![](_page_33_Figure_0.jpeg)

![](_page_33_Figure_2.jpeg)

PROPOSED 3:1 SLOPE

NOTES: 1. FOR DETAILED SECTIONS REFER TO DWG C202

 $\top$  |  $\top$  |  $\top$  |  $\top$  |  $\top$ 

-\_\_L\_\_\_

| No.                                                                                                  | Issue / Revis                                                                               | sion                                                                       |                                      |                                     | Date                                                                                                                                                                       |                                                                                      | Auth. |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------|
| 1                                                                                                    | ISSUED FOR DRAFT PLAN APPLICATION                                                           |                                                                            |                                      |                                     | 6/1/20                                                                                                                                                                     | )18                                                                                  | SH    |
| 2                                                                                                    | 2nd SUBMI                                                                                   | SSION DR                                                                   | AFT PLAN AP                          | PLICATION                           | 10/4/2                                                                                                                                                                     | 019                                                                                  | SH    |
|                                                                                                      |                                                                                             |                                                                            |                                      |                                     |                                                                                                                                                                            |                                                                                      |       |
|                                                                                                      |                                                                                             |                                                                            |                                      |                                     |                                                                                                                                                                            |                                                                                      |       |
|                                                                                                      |                                                                                             |                                                                            |                                      |                                     |                                                                                                                                                                            |                                                                                      |       |
|                                                                                                      |                                                                                             | Bur                                                                        | NSIDE                                | R<br>699<br>Mis<br>tel<br>fax<br>we | J. Burnside & As<br>90 Creditview Ro<br>ssissauga, Ontari<br>ephone (905) 82<br>( (905) 821-1809<br>b www.rjburnsid                                                        | ssociates Lin<br>ad, Unit 2<br>io, L5N 8R9<br>21-1800<br>e.com                       | nited |
| Client<br>LO<br>430<br>STO<br>L8E                                                                    | SANI HO<br>MCNEILLY RO<br>NEY CREEK,<br>5E3                                                 | BUR<br>MES L<br>OAD, SUIT<br>ON                                            | <b>NSIDE</b><br><b>TD.</b><br>TE 203 | L C<br>H                            | J. Burnside & As<br>90 Creditview Ro<br>ssissauga, Ontari<br>ephone (905) 82<br>( 905) 821-1809<br>bb www.rjburnsid                                                        | e.com                                                                                | nited |
| Client<br>LO<br>430<br>STO<br>L8E<br>Drawin<br>LO<br>TO<br>V<br>GR                                   | SANI HO<br>MCNEILLY RO<br>NEY CREEK,<br>5E3<br>ng Title<br>SANI FIF<br>WN OF GR<br>RADING F | BUR<br>MES L<br>OAD, SUIT<br>ON<br>TH WH<br>IMSBY                          | TD.<br>TD.<br>E 203                  | L C<br>H                            | J. Burnside & As<br>90 Creditview Ro<br>ssissauga, Ontari<br>ephone (905) 82<br>( 905) 821-1809<br>b www.rjburnsid                                                         | e.com                                                                                | I     |
| Client<br>LO<br>430<br>STO<br>L8E<br>Drawin<br>L8E<br>TO\<br>GR                                      | SANI HO<br>MCNEILLY RO<br>NEY CREEK,<br>5E3<br>ng Title<br>SANI FIF<br>WN OF GR<br>RADING F | BUR<br>MES L<br>OAD, SUIT<br>ON<br>TH WH<br>IMSBY<br>PLAN                  | NSIDE<br>TD.<br>TE 203               | LC<br>H<br>Checked                  | J. Burnside & As<br>90 Creditview Ro<br>ssissauga, Ontari<br>ephone (905) 82<br>( 905) 821-1809<br>bb www.rjburnsid<br>D S A<br>0 M                                        | ssociates Lin<br>ad, Unit 2<br>io, L5N 8R9<br>21-1800<br>e.com<br>E S                | I     |
| Client<br>LO<br>4300<br>STO<br>L8E<br>Drawin<br>LO<br>TO<br>V<br>GR<br>Drawr<br>AH<br>Projec<br>0401 | SANI HO<br>MCNEILLY RO<br>NEY CREEK,<br>5E3<br>ng Title<br>SANI FIF<br>WN OF GR<br>RADING F | BUR<br>MES L<br>OAD, SUIT<br>ON<br>TH WH<br>IMSBY<br>PLAN<br>Checked<br>SH | NSIDE                                | L C<br>H<br>Checked<br>SH           | J. Burnside & As<br>90 Creditview Ro<br>ssissauga, Ontari<br>ephone (905) 82<br>(905) 821-1809<br>b www.rjburnsid<br>D S A<br>0 M<br>Date<br>6/1/2018<br>Revision No.<br>0 | ssociates Lin<br>ad, Unit 2<br>io, L5N 8R9<br>21-1800<br>e.com<br>E S<br>Drawing No. | nited |

![](_page_34_Figure_0.jpeg)

![](_page_34_Figure_1.jpeg)

| 2 2nd Sl                                               | JBMISSION DR                        | 10/4/2         | 10/4/2019 SH                        |                                                                                                                      |                                                              |      |
|--------------------------------------------------------|-------------------------------------|----------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------|
|                                                        |                                     |                |                                     |                                                                                                                      |                                                              |      |
|                                                        |                                     |                |                                     |                                                                                                                      |                                                              |      |
|                                                        |                                     |                |                                     |                                                                                                                      |                                                              |      |
|                                                        |                                     |                |                                     |                                                                                                                      |                                                              |      |
| Ø                                                      | BUR                                 | NSIDE          | R<br>699<br>Mis<br>tel<br>fax<br>we | J. Burnside & As<br>90 Creditview Ro<br>ssissauga, Ontari<br>ephone (905) 82<br>( (905) 821-1809<br>b www.rjburnside | asociates Lim<br>ad, Unit 2<br>o, L5N 8R9<br>1-1800<br>e.com | ited |
| Client<br>LOSANI<br>430 MCNEIL<br>STONEY CR<br>L8E 5E3 | HOMES L<br>LY ROAD, SUIT<br>EEK, ON | <b>TD.</b>     | L C                                 | SA                                                                                                                   | N<br>e s                                                     | Ι    |
| Drawing Title<br>LOSANI                                |                                     | IEEL           |                                     |                                                                                                                      |                                                              |      |
| CROSS                                                  | SECTION                             | S              |                                     |                                                                                                                      |                                                              |      |
| Drawn<br>AH                                            | Checked<br>SH                       | Designed<br>EL | Checked<br>SH                       | Date<br>6/1/2018                                                                                                     | Drawing No.                                                  |      |
| Project No.<br>040159                                  |                                     | Contract No.   |                                     | Revision No.                                                                                                         |                                                              |      |
|                                                        |                                     |                |                                     | 0                                                                                                                    |                                                              | )2   |

![](_page_35_Figure_0.jpeg)

![](_page_35_Figure_1.jpeg)

LEGEND

PROPERTY BOUNDARY

## NOTES

040159 Scale

H 1:500 V 1:100

- FOR SLOPE STABILITY OF REVETMENT WALL, REFER TO SOIL-MAT MARCH 3, 2016 REPORT.
- 2. FOR SLOPE STABILITY OF EARTHEN CHANNEL, REFER TO SOIL-MAT OCTOBER 2019 REPORT.

| No.                                 | Issue / Revision                                                           | Date           |                                      | Auth.                                                                                                             |                                                                |      |  |  |
|-------------------------------------|----------------------------------------------------------------------------|----------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------|--|--|
| 1                                   | 2nd SUBMISSION DR                                                          | 10/4/2         | 2019                                 | SH                                                                                                                |                                                                |      |  |  |
|                                     |                                                                            |                |                                      |                                                                                                                   |                                                                |      |  |  |
|                                     |                                                                            |                |                                      |                                                                                                                   |                                                                |      |  |  |
|                                     |                                                                            |                |                                      |                                                                                                                   |                                                                |      |  |  |
| Olicet                              | BUR                                                                        | NSIDE          | R.,<br>69<br>Mit<br>tel<br>fax<br>we | J. Burnside & A<br>90 Creditview Ro<br>ssissauga, Ontar<br>ephone (905) 82<br>( (905) 821-1809<br>b www.rjburnsid | ssociates Lim<br>ad, Unit 2<br>io, L5N 8R9<br>21-1800<br>e.com | ited |  |  |
| Client<br>LO<br>430 I<br>STO<br>L8E | SANI HOMES L<br>MCNEILLY ROAD, SUIT<br>NEY CREEK, ON<br>5E3                | . <b>TD.</b>   | L C                                  | S A                                                                                                               | E S                                                            | Ι    |  |  |
| Drawin<br>LO<br>TOV                 | Drawing Title<br>LOSANI FIFTH WHEEL<br>TOWN OF GRIMSBY<br>PLAN AND PROFILE |                |                                      |                                                                                                                   |                                                                |      |  |  |
| Drawn<br>AH                         | Checked SH                                                                 | Designed<br>EL | Checked<br>SH                        | Date<br>6/1/2018                                                                                                  | Drawing No.                                                    |      |  |  |
| Projec<br>0401                      | t No.<br>59                                                                | Contract No.   | 0.1                                  | Revision No.<br>0                                                                                                 | C20                                                            | )3   |  |  |

5.0 10.0

![](_page_36_Figure_0.jpeg)

| ndo Unit  | 2.00 | Perso |
|-----------|------|-------|
| vnhome    | 3.10 | Perso |
| al/Retail | 0.02 | Perso |

| Posid    | Residential |      |                              | Non-Residential              |     |           |  |
|----------|-------------|------|------------------------------|------------------------------|-----|-----------|--|
| I Tesiu  | Residential |      |                              |                              |     |           |  |
| BLDG No. | Units       | Рор  | Employment (m <sup>2</sup> ) | Commercial (m <sup>2</sup> ) | Рор | Total Pop |  |
|          |             | Со   | ndo Towers                   |                              |     |           |  |
| A and B  | 491         | 982  | 530                          | 1035                         | 31  | 1013      |  |
| C and D  | 355         | 710  | 0                            | 1810                         | 36  | 746       |  |
| E        | 151         | 302  | 2035                         | 0                            | 40  | 342       |  |
| F        | 243         | 486  | 2127                         | 0                            | 42  | 528       |  |
|          |             |      | Towns                        |                              |     |           |  |
| H+I+J    | 14          | 43   |                              |                              |     | 43        |  |
| K + L    | 12          | 37   |                              |                              |     | 37        |  |
| M + N    | 10          | 31   |                              |                              |     | 31        |  |
|          | 1276        | 2591 | 4692                         | 2845                         | 149 | 2740      |  |

![](_page_36_Figure_4.jpeg)

| No.                                                                                    | Issue / Revis                                                                                          | sion                                                       |                                                 |                                                              | Date                                                                                                                              |                                                                           | Aut   |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------|
| 1                                                                                      | ISSUED FOR DRAFT PLAN APPLICATION                                                                      |                                                            |                                                 |                                                              | 6/1/2                                                                                                                             | 018                                                                       | SH    |
| 2                                                                                      | 2nd SUBMISSION DRAFT PLAN APPLICATION                                                                  |                                                            |                                                 |                                                              | 10/4/2                                                                                                                            | 2019                                                                      | SF    |
|                                                                                        |                                                                                                        |                                                            |                                                 |                                                              |                                                                                                                                   |                                                                           |       |
|                                                                                        |                                                                                                        |                                                            |                                                 |                                                              |                                                                                                                                   |                                                                           | _     |
|                                                                                        |                                                                                                        |                                                            |                                                 |                                                              |                                                                                                                                   |                                                                           |       |
|                                                                                        |                                                                                                        |                                                            |                                                 |                                                              |                                                                                                                                   |                                                                           |       |
|                                                                                        |                                                                                                        |                                                            |                                                 |                                                              |                                                                                                                                   |                                                                           |       |
|                                                                                        |                                                                                                        |                                                            |                                                 |                                                              |                                                                                                                                   |                                                                           |       |
|                                                                                        |                                                                                                        |                                                            |                                                 |                                                              |                                                                                                                                   |                                                                           |       |
|                                                                                        |                                                                                                        |                                                            |                                                 |                                                              |                                                                                                                                   |                                                                           |       |
|                                                                                        |                                                                                                        |                                                            |                                                 |                                                              |                                                                                                                                   |                                                                           |       |
|                                                                                        |                                                                                                        |                                                            |                                                 |                                                              |                                                                                                                                   |                                                                           |       |
|                                                                                        |                                                                                                        |                                                            |                                                 |                                                              |                                                                                                                                   |                                                                           |       |
|                                                                                        |                                                                                                        |                                                            |                                                 | R.<br>69                                                     | J. Burnside & A<br>90 Creditview Ro                                                                                               | ssociates Lin<br>bad, Unit 2                                              | nited |
|                                                                                        |                                                                                                        | Bur                                                        | NSIDE                                           | R.<br>69<br>Mi<br>te<br>fa                                   | J. Burnside & A<br>90 Creditview Ro<br>ssissauga, Onta<br>lephone (905) 8<br>x (905) 821-1809<br>eb www.rjburnsio                 | ssociates Lin<br>bad, Unit 2<br>rio, L5N 8R9<br>21-1800<br>)<br>de.com    | nited |
| Client<br>LO<br>430<br>STO<br>L8E                                                      | SANI HO<br>MCNEILLY RG<br>NEY CREEK,<br>5E3                                                            | BUR<br>MES L<br>OAD, SUIT                                  | <b>NSIDE</b><br><b>TD.</b><br>TD.               | E R.<br>69<br>Mi<br>te<br>fa<br>w<br>W<br>H                  | J. Burnside & A<br>90 Creditview Ro<br>ssissauga, Ontal<br>lephone (905) 821-1809<br>b www.rjburnsid<br>DSA                       | essociates Lin<br>bad, Unit 2<br>rio, L5N 8R9<br>21-1800<br>de.com<br>E S | nited |
| Client<br>LO<br>430<br>STO<br>L8E<br>Drawin                                            | <b>SANI HO</b><br>MCNEILLY RC<br>NEY CREEK,<br>5E3                                                     | BUR<br>MES L<br>OAD, SUIT                                  | <b>NSIDE</b><br><b>TD.</b><br>TE 203            | E R.<br>69<br>Mi<br>te<br>fa<br>w<br>W<br>H                  | J. Burnside & A<br>90 Creditview Re<br>ssissauga, Ontal<br>lephone (905) 8<br>x (905) 821-1809<br>eb www.rjburnsid                | essociates Lin<br>bad, Unit 2<br>rio, L5N 8R9<br>21-1800<br>de.com<br>E S | nited |
| Client<br>LO<br>430<br>STO<br>L8E<br>Drawii                                            | SANI HO<br>MCNEILLY RO<br>NEY CREEK,<br>5E3                                                            | BUR<br>MES L<br>OAD, SUIT<br>ON                            | TD.<br>TD.<br>TE 203                            | L C<br>H                                                     | J. Burnside & A<br>90 Creditview Ro<br>ssissauga, Ontal<br>lephone (905) 8<br>x (905) 821-1809<br>ab www.rjburnsid<br>DSA         | essociates Lin<br>bad, Unit 2<br>rio, L5N 8R9<br>21-1800<br>de.com<br>E S | nited |
| Client<br>LO<br>430<br>STO<br>L8E<br>Drawin<br>L0                                      | SANI HO<br>MCNEILLY RO<br>NEY CREEK,<br>5E3<br>ng Title<br>SANI FIF<br>WN OF GR                        | BUR<br>MES L<br>OAD, SUIT<br>ON                            | TD.<br>TD.<br>TE 203                            | E R.<br>69<br>Mi<br>te<br>fa<br>w<br>W<br>H                  | J. Burnside & A<br>90 Creditview Ro<br>ssissauga, Ontal<br>lephone (905) 8<br>(905) 821-1800<br>eb www.rjburnsid                  | essociates Lin<br>bad, Unit 2<br>rio, L5N 8R9<br>21-1800<br>de.com<br>E S | I     |
| Client<br>LO<br>430<br>STO<br>L8E<br>Drawii<br>LO                                      | SANI HO<br>MCNEILLY RO<br>NEY CREEK,<br>5E3<br>ng Title<br>SANI FIF<br>WN OF GR                        | BUR<br>MES L<br>OAD, SUIT<br>ON<br>TH WH                   | TD.<br>TD.<br>E 203                             |                                                              | J. Burnside & A<br>90 Creditview Ro<br>ssissauga, Ontal<br>lephone (905) 8<br>x (905) 821-1809<br>b www.rjburnsid<br>DSA          | essociates Lin<br>bad, Unit 2<br>rio, L5N 8R9<br>21-1800<br>de.com<br>E S | nited |
| Client<br>LO<br>430<br>L8E<br>Drawii<br>LO<br>TO<br>SA                                 | SANI HO<br>MCNEILLY RO<br>NEY CREEK,<br>5E3<br>ng Title<br>SANI FIF<br>WN OF GR<br>NITARY I            | BUR<br>MES L<br>OAD, SUIT<br>ON<br>TH WH                   | NSIDE<br>TD.<br>TE 203                          | E R.<br>69<br>Mi<br>te<br>fa<br>w<br>H                       | J. Burnside & A<br>90 Creditview Ro<br>ssissauga, Ontal<br>lephone (905) 8<br>(905) 821-1809<br>b www.rjburnsid<br>DSA            | essociates Lin<br>bad, Unit 2<br>rio, L5N 8R9<br>21-1800<br>de.com<br>E S | I     |
| Client<br>LO<br>STO<br>L8E<br>Drawit<br>LO<br>TO<br>SA                                 | SANI HO<br>SANI HO<br>MCNEILLY RO<br>NEY CREEK,<br>5E3<br>ng Title<br>SANI FIF<br>WN OF GR<br>NITARY I | MES L<br>OAD, SUIT<br>ON<br>TH WH<br>IMSBY<br>DRAIN        | NSIDE<br>TD.<br>TD.<br>E 203<br>IEEL<br>AGE ARE | E R.<br>69<br>Mi<br>te<br>fa<br>w<br>W<br>LC<br>H<br>EA PLAN | J. Burnside & A<br>90 Creditview Re<br>ssissauga, Ontal<br>lephone (905) 821-1809<br>b www.rjburnsid<br>D S A<br>0 M              | ssociates Lin<br>bad, Unit 2<br>rio, L5N 8R9<br>21-1800<br>de.com<br>E S  | I     |
| Client<br>LO<br>430<br>STO<br>L8E<br>Drawin<br>L0<br>TO<br>SA<br>Drawr<br>AH<br>Projec | SANI HO<br>MCNEILLY RO<br>NEY CREEK,<br>5E3<br>ng Title<br>SANI FIF<br>WN OF GR<br>NITARY I            | BUR<br>MES L<br>OAD, SUIT<br>ON<br>TH WH<br>UMSBY<br>DRAIN | INSIDE                                          | E R.<br>69<br>Mi<br>te<br>fa<br>w<br>H                       | J. Burnside & A<br>90 Creditview Re<br>ssissauga, Ontal<br>lephone (905) 8<br>x (905) 821-1809<br>b www.rjburnsid<br>D S A<br>0 M | ssociates Lin<br>bad, Unit 2<br>rio, L5N 8R9<br>21-1800<br>de.com<br>E S  | nite  |

![](_page_37_Figure_0.jpeg)

![](_page_37_Figure_2.jpeg)

## <u>LEGEND</u>

![](_page_37_Figure_4.jpeg)

- SINGLE CATCHBASIN
  - DOUBLE CATCHBASIN

## OGS SIZING/WATER QUALITY

| AREA ID    | OGS #           | AREA (Ha) | 'C'  | OGS TYPE |
|------------|-----------------|-----------|------|----------|
| 1.1 TO 1.3 | OGS1            | 1.37      | 0.74 | STC 4000 |
| 2.1 TO 2.3 | OGS2            | 1.39      | 0.90 | STC 5000 |
| 3.1 TO 3.2 | OGS3            | 0.88      | 0.90 | STC 3000 |
| 4.1 TO 4.2 | OGS4            | 0.70      | 0.90 | STC 2000 |
| 5.1 TO 5.3 | OGS5            | 0.60      | 0.90 | STC 2000 |
| 2.4 TO 2.5 | ROOFTOP/AMENITY | 0.58      | 0.67 | N/A      |
| 6.1 TO 6.2 | ROOFTOP         | 0.50      | 0.90 | N/A      |
| 7.1 TO 7.2 | ROOFTOP         | 0.54      | 0.90 | N/A      |
| 8.1 TO 8.4 | OPEN SPACE      | 1.77      | 0.53 | NA       |
|            | TOTAL           | 8.33      |      |          |

| No.                                                                                | Issue / Revision                                                                                                                                                                |                    |         | Date                     |             | Auth. |  |  |  |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------|--------------------------|-------------|-------|--|--|--|
| 1                                                                                  | ISSUED FOR DRAFT                                                                                                                                                                | PLAN SUBMISS       | SION    | 6/1/20                   | )18         | SH    |  |  |  |
| 2                                                                                  | 2nd SUBMISSION DR                                                                                                                                                               | 10/4/2             | 2019    | SH                       |             |       |  |  |  |
|                                                                                    |                                                                                                                                                                                 |                    |         |                          |             |       |  |  |  |
|                                                                                    |                                                                                                                                                                                 |                    |         |                          |             |       |  |  |  |
|                                                                                    |                                                                                                                                                                                 |                    |         |                          |             |       |  |  |  |
|                                                                                    | R.J. Burnside & Associates Limited<br>6990 Creditview Road, Unit 2<br>Mississauga, Ontario, L5N 8R9<br>telephone (905) 821-1800<br>fax (905) 821-1809<br>web www.rjburnside.com |                    |         |                          |             |       |  |  |  |
| Client<br>LO<br>430 I<br>STO<br>L8E                                                | Client<br>LOSANI HOMES LTD.<br>430 MCNEILLY ROAD, SUITE 203<br>STONEY CREEK, ON<br>L8E 5E3<br>HOMES                                                                             |                    |         |                          |             |       |  |  |  |
| Drawing Title<br>LOSANI FIFTH WHEEL<br>TOWN OF GRIMSBY<br>STORM DRAINAGE AREA PLAN |                                                                                                                                                                                 |                    |         |                          |             |       |  |  |  |
| Drawn                                                                              | n Checked                                                                                                                                                                       | Designed           | Checked | Date                     | Drawing No. |       |  |  |  |
| AH<br>Projec                                                                       | SH<br>xt No.                                                                                                                                                                    | EL<br>Contract No. | SH      | 6/1/2018<br>Revision No. |             | 12    |  |  |  |
| 0401                                                                               | 159                                                                                                                                                                             |                    |         | 0                        | 」しつし        | Ζ     |  |  |  |

040159 Scale 1:750

υ 10

![](_page_38_Picture_0.jpeg)

Appendix C

Sanitary and Storm Sewer Design Sheets Regional Sewer Infrastructure

#### Losani Homes

Fifth Wheel Development, Grimsby, ON

![](_page_40_Picture_3.jpeg)

![](_page_40_Picture_5.jpeg)

| TIAL<br>c<br>in) | TIME OF<br>CONCENTRATION<br>(min) | ACC. TIME OF<br>CONCENTRATION<br>(min) | PERCENT<br>FULL<br>(%) |
|------------------|-----------------------------------|----------------------------------------|------------------------|
|                  |                                   |                                        |                        |
|                  |                                   |                                        |                        |
| .00              | 0.84                              | 10.84                                  | 62%                    |
| .84              | 1.17                              | 12.01                                  | 86%                    |
|                  |                                   |                                        |                        |
| .00              | 0.10                              | 10.10                                  | 68%                    |
| .10              | 0.33                              | 10.44                                  | 87%                    |
|                  |                                   |                                        |                        |
| .01              | 0.04                              | 12.05                                  | 74%                    |
| .05              | 0.17                              | 12.22                                  | 74%                    |
|                  |                                   |                                        |                        |
|                  |                                   |                                        |                        |
| .00              | 0.58                              | 10.58                                  | 83%                    |
| .58              | 0.64                              | 11.22                                  | 67%                    |
| .22              | 0.72                              | 11.93                                  | 70%                    |
| .93              | 0.22                              | 12.15                                  | 70%                    |
|                  |                                   |                                        |                        |
| .00              | 0.54                              | 10.54                                  | 53%                    |
| .54              | 0.59                              | 11.13                                  | 58%                    |
| .13              | 0.13                              | 11.26                                  | 90%                    |
|                  |                                   |                                        |                        |
| 15               | 0.24                              | 12.40                                  | 74%                    |
| 40               | 0.09                              | 12 49                                  | 74%                    |
|                  | 0.00                              | 12.10                                  | 11/0                   |
| 00               | 0.15                              | 10 15                                  | 81%                    |
| .00              | 0.15                              | 10.15                                  | 0170                   |
| 10               | 0.20                              | 12.60                                  | 87%                    |
| .43              | 0.20                              | 12.09                                  | 07 /0                  |
|                  |                                   |                                        |                        |
| .00              | 0.13                              | 10.13                                  | 92%                    |
| .13              | 0.79                              | 10.92                                  | 81%                    |
| .10              | 0.22                              | 11 14                                  | 81%                    |
| .02              | 0.22                              |                                        | 0170                   |
| 00               | 1.25                              | 11 25                                  | 81%                    |
| 25               | 0.06                              | 11.20                                  | 81%                    |
| 0                | 0.00                              | 11.01                                  | 0170                   |
| 31               | 0.03                              | 11.24                                  | 05%                    |
| .01              | 0.03                              | 11.34                                  | 90%                    |
| .34              | 0.03                              | 11.37                                  | 95%                    |
|                  |                                   |                                        |                        |
| 00               | 0.00                              | 10.00                                  | 0.40/                  |
| .00              | 0.03                              | 10.03                                  | 94%                    |
| .03              | 0.05                              | 10.09                                  | 94%                    |
|                  |                                   |                                        |                        |
|                  | 1                                 | 1                                      |                        |

#### NOMINAL PIPE SIZE USED

## Losani Homes

Fifth Wheel Development, Grimsby, ON

![](_page_41_Picture_3.jpeg)

| Project: 3: 300 40159<br>Dat: 4-Oct 13/<br>Checket: S.A.H.         Min. Diameter<br>Starting Tc =<br>Factor 5 Strey         2.50<br>out         min         Test -<br>5         min         B =<br>5         75         min         B =<br>5         75         min         Test -<br>5         Test -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                       |          |      |              |      |        |             |          |          | Rainfall I | Intensity =                 | - <b>A</b> |         |              |           |           |         |               |               |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------|----------|------|--------------|------|--------|-------------|----------|----------|------------|-----------------------------|------------|---------|--------------|-----------|-----------|---------|---------------|---------------|-----------|
| Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Project #      | <b>#: 300 04015</b> 9 | )        |      |              |      | Min.   | Diameter =  | 250      | mm       |            |                             | (Tc+B)^c   | where 1 | Tc is in hou | rs        |           |         |               |               |           |
| Designer:         Stating Te =         10         min         B =         6.0         (5/7)         (5/7)         Stating Te =         10.0         min         B =         6.0         (5/7)         (5/7)         Stating Te =         10.0         min         B =         6.0         (5/7)         (5/7)         Stating Te =         10.0         min         B =         6.0         (5/7)         (5/7)         Stating Te =         10.0         min         B =         6.0         (5/7)         (5/7)         Stating Te =         10.0         min         B =         6.0         (5/7)         (5/7)         Stating Te =         10.0         Min         min         min         B =         6.0         (5/7)         (10.0         Min         min <thmin< th="">         min         min</thmin<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date           | e: 4-Oct-19           |          |      |              |      | Ма     | nnings 'n'= | 0.013    |          |            | A =                         | 785.59     | Ì       |              |           |           |         |               |               |           |
| Checked:         S.A.H.         Factor of Safety =         5         %         C =         0.79         Mark         Place         NUMINAL PIPE SIZE USED           DESCRIPTION         TM         AREA         CUMPE         AREA         CCUM         NARAL PIPE SIZE USED         CONSTANT         TOTAL         LENOT         SLOPE         PIPE         FULL FLOW         FULL FLOW         TIME OF         CONSTANT         TOTAL         Mark         ACC.TIME OF         PERCENT         CONSTANT         FULL         FULL <th>Designed</th> <th>1: E.L.</th> <th></th> <th></th> <th></th> <th></th> <th>St</th> <th>arting Tc =</th> <th>10</th> <th>min</th> <th></th> <th>В=</th> <th>6</th> <th>(5 Yr)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Designed       | 1: E.L.               |          |      |              |      | St     | arting Tc = | 10       | min      |            | В=                          | 6          | (5 Yr)  |              |           |           |         |               |               |           |
| DESCRIPTION         FROM<br>MH         TO<br>MH         AREA<br>(h)         RUNOFF<br>(h)         AR         ACCUM,<br>AR         FLOW<br>(m3/9)         CONSTANT<br>FLOW<br>(m3/9)         CONSTANT<br>FLOW<br>(m3/9)         CONSTANT<br>(h)         CONSTANT<br>(h) <tht< th=""><th>Checked</th><th>l: S.A.H.</th><th></th><th></th><th></th><th></th><th>Factor</th><th>of Safety =</th><th>5</th><th>%</th><th></th><th>C =</th><th>0.79</th><th></th><th></th><th></th><th></th><th></th><th></th><th>NOMINAL PIPE</th><th>SIZE USED</th></tht<>                                                                                                                        | Checked        | l: S.A.H.             |          |      |              |      | Factor | of Safety = | 5        | %        |            | C =                         | 0.79       |         |              |           |           |         |               | NOMINAL PIPE  | SIZE USED |
| DESCRIPTION         FROM<br>MH         TO<br>MH         AREA<br>(N)         RUNOFF<br>(N)         'AR         ACUM<br>(AR)         FLOW<br>(m)         CONSTANT<br>(m)         CONSTANT         CONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                       |          |      |              |      |        | -           |          |          |            |                             |            |         |              |           |           |         |               |               |           |
| DESCRIPTION         FROM<br>MH         TO<br>MH         AREA<br>(ha)         RUNOFF<br>(na)         'AR         ACCUM.<br>'AR'         FLOW<br>(m3/8)         CONSTANT<br>FLOW<br>(m3/8)         TOTAL<br>FLOW<br>(m3/8)         LENGTH<br>(m/8)         SLOPE<br>(m/8)         PILE FLOW<br>(m/8)         FULL FLOW<br>VELOCITY         INITIAL<br>TO<br>CONCENTRATION         TIME OF<br>CONSTANT<br>(m/8)         ACC. TIME OF<br>(m/8)         ACC. TIME OF<br>(m/8)         CONSTANT<br>(m/8)         CONSTANT<br>(m/8)         CONSTANT<br>(m/8)         TOTAL<br>(m/8)         LENGTH<br>(m/8)         PILE FLOW<br>(m/8)         FULL FLOW<br>VELOCITY         INITIAL<br>(m/8)         TIME OF<br>CONCENTRATION         ACC. TIME OF<br>FULL<br>(m/8)         CONSTANT<br>(m/8)         C                                                                                                                                                                                                                                                                                                                                                        |                |                       |          |      |              |      |        |             |          |          |            |                             |            |         |              |           |           |         |               |               |           |
| DESCRIPTION         FROM<br>MH         TO<br>MH         AREA<br>MH         RUM PCUM<br>(m)         RACUM<br>(m)         RNTRASTY<br>(m)         FLOW<br>(m3/s)         CONSTANT<br>(m)         TOTAL<br>(m)         SLOPE<br>(m)         DUL FLOW<br>(m)         FULU FLOW<br>(m) <th></th> <th>ACCUM.</th> <th></th>                                                                                                                                                               |                |                       |          |      |              |      |        |             |          |          | ACCUM.     |                             |            |         |              |           |           |         |               |               |           |
| MH         MH         (ha)         COEFFICIENT<br>re"         'AR         INERNITV<br>(m3/s)         FLOW<br>(m3/s)         FLOW<br>(m3/s)         FLOW<br>(m3/s)         DAMETER<br>(m3/s)         CAPACITY<br>(mm)         VELOCITY<br>(ms)         Te<br>(ms)         CONCENTRATION<br>(ms)         CONCENTRATION<br>(ms)         CONCENTRATION<br>(ms)         FUL<br>(ms)           VINTED         VIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DESCRIPTION    | FROM                  | то       | AREA | RUNOFF       | 'AR' | ACCUM. | RAINFALL    | FLOW     | CONSTANT | CONSTANT   | TOTAL                       | LENGTH     | SLOPE   | PIPE         | FULL FLOW | FULL FLOW | INITIAL | TIME OF       | ACC. TIME OF  | PERCENT   |
| N. SERVICE RD         CB57         MH66         0.18         0.90         0.16         186.7         0.084         24.0         1.00         300         0.097         1.37         10.00         0.29         10.29         87%           N. SERVICE RD         CB57         MH56         0.18         0.90         0.16         186.5         0.084         0.084         1.00         300         0.097         1.37         10.029         0.15         10.44         87%           STREET C         MH53         0.14         0.90         0.13         186.7         0.065         0.065         47.0         1.00         300         0.097         1.37         10.00         0.57         10.57         68%           STREET C         MH53         MH52         0.15         0.90         0.14         0.26         186.4         0.135         0.135         1.00         375         0.175         1.59         10.57         0.47         11.05         77%           STREET C         MH51         MH51         0.26         186.4         0.135         0.135         12.3         1.00         375         0.175         1.59         10.57         0.47         11.05         77%           WINSTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | мн                    | мн       | (ha) | COEFFICIENT  |      | 'AR'   | INTENSITY   | <i>.</i> | FLOW     | FLOW       | FLOW<br>(m <sup>3</sup> /s) |            | (0/)    | DIAMETER     | CAPACITY  | VELOCITY  | TC      | CONCENTRATION | CONCENTRATION | FULL      |
| N. SERVICE RD         CB57         MH56         0.18         0.90         0.16         186.7         0.084         24.0         1.00         300         0.097         1.37         10.00         0.29         87%           MH56         MH51         0.14         0.16         186.5         0.084         0.084         12.3         1.00         300         0.097         1.37         10.29         0.15         10.44         87%           STREET C         MH53         MH52         0.14         0.90         0.13         186.7         0.065         0.065         47.0         1.00         300         0.097         1.37         10.00         0.57         10.57         68%           STREET C         MH53         MH51         0.90         0.14         0.26         186.4         0.135         0.135         1.00         375         0.175         1.59         10.57         0.47         11.05         77%           STREET C         MH52         MH51         0.30         0.90         0.13         186.2         0.279         0.279         68.0         1.30         375         0.175         1.59         11.73         86%           OGS5         MH50         0.654         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                       |          |      | " <b>R</b> " |      |        | (mm/nr)     | (m3/s)   | (m3/s)   | (m3/s)     | (11 /5)                     | (m)        | (%)     | (mm)         | (11175)   | (m/s)     | (min)   | (min)         | (min)         | (%)       |
| N. SERVICE RD         CB57         MH56         0.18         0.90         0.16         186.7         0.084         0.084         24.0         1.00         300         0.097         1.37         10.00         0.29         10.29         87%           MH56         MH51         MH51         0.16         186.5         0.084         0.084         12.3         1.00         300         0.097         1.37         10.00         0.29         10.29         87%           STREET C         MH54         MH53         0.14         0.90         0.13         186.7         0.065         0.065         47.0         1.00         300         0.097         1.37         10.00         0.57         10.57         68%           STREET C         MH53         MH52         0.15         0.90         0.14         0.26         186.4         0.135         0.135         1.00         375         0.175         1.59         11.05         0.13         11.17         7%           STREET C         MH51         MH50         0.13         0.90         0.12         0.54         186.2         0.279         0.279         68.0         1.30         375         0.175         1.59         11.05         0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                       |          |      |              |      |        |             |          |          |            |                             |            |         |              |           |           |         |               |               |           |
| N. DECIVICIAL       Oxfor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N SERVICE RD   | CB57                  | MH56     | 0.18 | 0.90         | 0.16 | 0.16   | 186 7       | 0.084    |          |            | 0.084                       | 24.0       | 1 00    | 300          | 0.097     | 1.37      | 10.00   | 0.29          | 10 29         | 87%       |
| Millo         Millo <th< td=""><td>N. CERVICE IND</td><td>MH56</td><td>MH51</td><td>0.10</td><td>0.00</td><td>0.10</td><td>0.16</td><td>186.5</td><td>0.001</td><td></td><td></td><td>0.084</td><td>12.3</td><td>1.00</td><td>300</td><td>0.007</td><td>1.07</td><td>10.00</td><td>0.15</td><td>10.20</td><td>87%</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N. CERVICE IND | MH56                  | MH51     | 0.10 | 0.00         | 0.10 | 0.16   | 186.5       | 0.001    |          |            | 0.084                       | 12.3       | 1.00    | 300          | 0.007     | 1.07      | 10.00   | 0.15          | 10.20         | 87%       |
| STREET C       MH54       MH53       0.14       0.90       0.13       0.13       186.7       0.065       47.0       1.00       300       0.097       1.37       10.00       0.57       10.57       68%         STREET C       MH53       MH52       0.15       0.90       0.14       0.26       186.4       0.135       0.135       45.0       1.00       375       0.175       1.59       10.57       0.47       11.05       77%         STREET C       MH52       0.13       0.90       0.14       0.26       186.4       0.135       0.135       45.0       1.00       375       0.175       1.59       10.57       0.47       11.05       77%         STREET C       MH52       MH51       V       0.26       186.2       0.279       0.15       1.20       375       0.175       1.59       10.57       0.47       11.05       77%         WINSTON ST       MH51       MH50       0.13       0.90       0.12       0.54       186.0       0.279       0.279       4.0       1.00       525       0.430       1.99       11.73       0.03       11.76       65%         OGS5       MH50       OGS5       CULV2       0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | Millioo               | WII IO I |      |              |      | 0.10   | 100.0       | 0.004    |          |            | 0.004                       | 12.0       | 1.00    | 000          | 0.007     | 1.07      | 10.20   | 0.10          | 10.44         | 0170      |
| STREET C         MH51         MH52         0.11         0.26         186.7         0.035         1.00         375         0.175         1.59         10.57         0.47         10.55         77%           STREET C         MH52         MH51         -         -         0.26         186.2         0.135         45.0         1.00         375         0.175         1.59         11.05         0.47         11.05         77%           STREET C         MH52         MH51         -         0.26         186.2         0.135         12.3         1.00         375         0.175         1.59         11.05         0.47         11.05         77%           WINSTON ST         MH51         MH50         0.13         0.90         0.12         0.54         186.2         0.279         68.0         1.30         450         0.325         2.04         11.17         77%           WINSTON ST         MH50         OGS5         -         0.54         186.0         0.279         0.279         4.0         1.00         525         0.430         1.99         11.73         0.03         11.76         65%           OGS5         CULV2         0.54         186.0         0.279         0.279 </td <td>STREET C</td> <td>MH54</td> <td>MH53</td> <td>0 14</td> <td>0.90</td> <td>0.13</td> <td>0.13</td> <td>186 7</td> <td>0.065</td> <td></td> <td></td> <td>0.065</td> <td>47.0</td> <td>1 00</td> <td>300</td> <td>0.097</td> <td>1.37</td> <td>10.00</td> <td>0.57</td> <td>10 57</td> <td>68%</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STREET C       | MH54                  | MH53     | 0 14 | 0.90         | 0.13 | 0.13   | 186 7       | 0.065    |          |            | 0.065                       | 47.0       | 1 00    | 300          | 0.097     | 1.37      | 10.00   | 0.57          | 10 57         | 68%       |
| STREET C       MH52       MH51       OT       OT       O.26       186.2       O.135       O.135       12.3       1.00       375       O.175       1.59       11.05       O.13       11.17       77%         WINSTON ST       MH51       MH50       O.13       0.90       0.12       0.54       186.2       0.279       0.279       68.0       1.30       450       0.325       2.04       11.17       0.55       11.73       86%         OGS5       MH50       OGS5       0.54       186.0       0.279       0.279       4.0       1.00       525       0.430       1.99       11.73       0.03       11.76       65%         OGS5       CULV2       0.54       186.0       0.279       0.279       4.0       1.00       525       0.430       1.99       11.76       0.03       11.76       65%         OGS5       CULV2       0.54       186.0       0.279       0.279       17.2       0.50       525       0.304       1.40       11.76       0.20       11.97       92%         Corr       1       0.45       0.45       0.252       0.252       11.2       1.50       450       0.349       2.20       10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STREET C       | MH53                  | MH52     | 0.15 | 0.90         | 0.14 | 0.26   | 186.4       | 0.135    |          |            | 0.135                       | 45.0       | 1.00    | 375          | 0.175     | 1.59      | 10.57   | 0.47          | 11.05         | 77%       |
| OTALLY C       Miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | STREET C       | MH52                  | MH51     | 0.10 |              | •••• | 0.26   | 186.2       | 0.135    |          |            | 0.135                       | 12.3       | 1.00    | 375          | 0.175     | 1.59      | 11.05   | 0.13          | 11.17         | 77%       |
| WINSTON ST       MH50       0.13       0.90       0.12       0.54       186.2       0.279       68.0       1.30       450       0.325       2.04       11.17       0.55       11.73       86%         OGS5       MH50       OGS5       I       I       0.54       186.0       0.279       Image: Comparison of the comparis                                                                                                                                                                                                                                 | 0              |                       |          |      |              |      | 0.20   |             | 0.100    |          |            | 01100                       |            |         | 0.0          | 00        |           |         | 0110          |               |           |
| Minor       Minor <th< td=""><td>WINSTON ST</td><td>MH51</td><td>MH50</td><td>0 13</td><td>0.90</td><td>0.12</td><td>0.54</td><td>186.2</td><td>0 279</td><td></td><td></td><td>0 279</td><td>68.0</td><td>1 30</td><td>450</td><td>0.325</td><td>2 04</td><td>11 17</td><td>0.55</td><td>11 73</td><td>86%</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WINSTON ST     | MH51                  | MH50     | 0 13 | 0.90         | 0.12 | 0.54   | 186.2       | 0 279    |          |            | 0 279                       | 68.0       | 1 30    | 450          | 0.325     | 2 04      | 11 17   | 0.55          | 11 73         | 86%       |
| OGS5       MH50       OGS5       CULV2       Image: Comparison of the c                   |                |                       |          | 0.10 |              | 0    | 0.0    |             | 0.2.0    |          |            | 0.2.0                       |            |         |              | 0.020     |           |         | 0.00          |               |           |
| OGS5       CULV2       Image: Culva base in the stress of the str | OGS5           | MH50                  | OGS5     |      |              |      | 0.54   | 186.0       | 0.279    |          |            | 0.279                       | 4.0        | 1.00    | 525          | 0.430     | 1.99      | 11.73   | 0.03          | 11.76         | 65%       |
| BLDG E, F       P6       CULV2       0.54       0.90       0.49       186.7       0.252       11.2       1.50       450       0.349       2.20       10.00       0.09       10.09       72%         BLDG E, F       P6       CULV2       0.54       0.90       0.49       186.7       0.252       11.2       1.50       450       0.349       2.20       10.00       0.09       10.09       72%         BLD C, E       P5       CULV2       0.50       0.90       0.45       186.7       0.233       0.233       27.2       1.00       450       0.285       1.79       10.00       0.25       10.25       82%         BLD C, E       P5       CULV2       0.50       0.45       0.45       186.7       0.233       0.233       27.2       1.00       450       0.285       1.79       10.00       0.25       10.25       82%         M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | OGS5                  | CULV2    |      |              |      | 0.54   | 186.0       | 0.279    |          |            | 0.279                       | 17.2       | 0.50    | 525          | 0.304     | 1.40      | 11.76   | 0.20          | 11.97         | 92%       |
| BLDG E, F       P6       CULV2       0.54       0.90       0.49       186.7       0.252       11.2       1.50       450       0.349       2.20       10.00       0.09       10.09       72%         BLDG E, F       P6       CULV2       0.54       0.90       0.49       186.7       0.252       0.252       11.2       1.50       450       0.349       2.20       10.00       0.09       10.09       72%         BLD C, E       P5       CULV2       0.50       0.90       0.45       186.7       0.233       0.233       27.2       1.00       450       0.285       1.79       10.00       0.255       10.25       82%         BLD C, E       P5       CULV2       0.50       0.90       0.45       186.7       0.233       0.233       27.2       1.00       450       0.285       1.79       10.00       0.255       10.25       82%         How                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                       |          |      |              |      |        |             |          |          |            |                             |            |         |              |           |           | -       |               |               |           |
| BLDG E, F       P6       CULV2       0.54       0.90       0.49       186.7       0.252       11.2       1.50       450       0.349       2.20       10.00       0.09       10.09       72%         L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | 1                     |          |      |              |      |        |             |          |          |            |                             |            |         | 1            |           |           |         | 1             |               |           |
| BLD C, E       P5       CULV2       0.50       0.90       0.45       186.7       0.233       Culve       1.00       450       0.285       1.79       10.00       0.255       10.25       82%         Image: Strain of the str                                                                                                                                                         | BLDG E, F      | P6                    | CULV2    | 0.54 | 0.90         | 0.49 | 0.49   | 186.7       | 0.252    |          |            | 0.252                       | 11.2       | 1.50    | 450          | 0.349     | 2.20      | 10.00   | 0.09          | 10.09         | 72%       |
| BLD C, E       P5       CULV2       0.50       0.90       0.45       186.7       0.233       0.233       27.2       1.00       450       0.285       1.79       10.00       0.25       10.25       82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                       |          |      |              |      |        |             |          |          |            |                             |            |         |              |           |           |         |               |               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BLD C, E       | P5                    | CULV2    | 0.50 | 0.90         | 0.45 | 0.45   | 186.7       | 0.233    |          |            | 0.233                       | 27.2       | 1.00    | 450          | 0.285     | 1.79      | 10.00   | 0.25          | 10.25         | 82%       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                       |          |      |              |      |        |             |          |          |            |                             |            |         |              |           |           |         |               |               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                       |          |      |              |      |        |             |          |          |            |                             |            |         |              |           |           |         |               |               |           |

![](_page_42_Figure_0.jpeg)

![](_page_42_Picture_1.jpeg)

# Niagara Region

## 2016 Master Servicing Plan

Baker Road WWTP

## EXISTING COLLECTION SCHEMATIC

Legend

![](_page_42_Picture_7.jpeg)

Wastewater Treatment Plant

![](_page_42_Picture_9.jpeg)

Sewage Pumping Station

![](_page_42_Picture_11.jpeg)

Forcemain

Connection from SPS to SPS

Connection from SPS to WWTP

![](_page_42_Picture_16.jpeg)

#### Losani Homes

Fifth Wheel Development, Grimsby, ON

![](_page_43_Picture_3.jpeg)

| Project #: 300 040159<br>Date: 7-Oct-19 | Min Diameter = 200 mm<br>Mannings 'n'= 0.013 | Avg. Domestic Flow = 275.0 I/c.<br>Infiltration = 0.286 I/s. | /d<br>/ha             |
|-----------------------------------------|----------------------------------------------|--------------------------------------------------------------|-----------------------|
| Designed: E.L.                          | Min. Velocity = 0.60 m/s                     | Max. Peaking Factor = 4.00                                   |                       |
| Checked: S.A.H.                         | Max. Velocity = 3.65 m/s                     | Min. Peaking Factor= 1.50                                    | Factor of Safety = 10 |

|                |       |       |      | I    | RESIDEN | ITIAL and | NON-RESI | DENTIAL |        |      | сомм | ERCIAL/II | NDUSTRIAL/I | NSTITUTION | AL     |              | FLOW CA | LCULATIONS | 6     |       |       |          | PIF       | PE DATA   |          |         |
|----------------|-------|-------|------|------|---------|-----------|----------|---------|--------|------|------|-----------|-------------|------------|--------|--------------|---------|------------|-------|-------|-------|----------|-----------|-----------|----------|---------|
|                |       |       |      |      |         |           |          |         |        |      |      |           |             |            |        |              |         |            |       |       |       | PIPE     |           |           |          |         |
| DESCRIPTION    | FROM  | то    |      | ACC. |         |           |          |         | ACCUM. |      | ACC. | EQUIV.    | FLOW        | EQUIV.     | ACCUM. | INFILTRATION | TOTAL   | PEAKING    | POP.  | TOTAL | SLOPE | DIAMETER | FULL FLOW | FULL FLOW | ACTUAL   | PERCENT |
|                | МН    | МН    | AREA | AREA | UNITS   | DENSITY   | DENSITY  | POP     | RES.   | AREA | AREA | POP.      | RATE        | POP.       | EQUIV. | (l/s)        | ACCUM.  | FACTOR     | FLOW  | FLOW  |       |          | CAPACITY  | VELOCITY  | VELOCITY | FULL    |
|                |       |       | (ha) | (ha) | (#)     | (P/ha)    | (P/unit) |         | POP.   | (ha) | (ha) | (p/ha)    | (l/s/ha)    |            | POP.   |              | POP.    |            | (l/s) | (l/s) | (%)   | (mm)     | (l/s)     | (m/s)     | (m/s)    | (%)     |
|                |       | i .   | 1    | 1    |         |           | 1        |         |        |      | Ú.   |           | r.          |            | T.     | I.           | i .     | r.         |       | n     |       |          | 1         |           |          |         |
| BLDG N & M     | MH7A  | MH6A  | 0.39 | 0.39 |         |           |          | 31      | 31     |      |      |           |             |            |        | 0.1          | 31      | 4.00       | 0.4   | 0.5   | 0.50  | 200      | 23.2      | 0.74      | 0.30     | 2%      |
| BLDG L & K     | MH6A  | MH5A  | 0.45 | 0.84 |         |           |          | 37      | 68     |      |      |           |             |            |        | 0.2          | 68      | 4.00       | 0.9   | 1.1   | 0.50  | 200      | 23.2      | 0.74      | 0.38     | 5%      |
|                |       |       |      |      |         |           |          |         |        |      |      |           |             |            |        |              |         |            |       |       |       |          |           |           |          |         |
| ROUTE          | MH5A  | MH4A  |      | 0.84 |         |           |          |         | 68     |      |      |           |             |            |        | 0.2          | 68      | 4.00       | 0.9   | 1.1   | 0.40  | 200      | 20.7      | 0.66      | 0.35     | 5%      |
|                |       |       |      |      |         |           |          |         |        |      |      |           |             |            |        |              |         |            |       |       |       |          |           |           |          |         |
| BLDG H, I, & J | SSWR4 | MH8A  | 0.41 | 0.41 |         |           |          | 43      | 43     |      |      |           |             |            |        | 0.1          | 43      | 4.00       | 0.5   | 0.7   | 0.50  | 200      | 23.2      | 0.74      | 0.33     | 3%      |
|                | MH8A  | MH4A  |      | 0.41 |         |           |          |         | 43     |      |      |           |             |            |        | 0.1          | 43      | 4.00       | 0.5   | 0.7   | 1.00  | 200      | 32.8      | 1.04      | 0.41     | 2%      |
|                |       |       |      |      |         |           |          |         |        |      |      |           |             |            |        |              |         |            |       |       |       |          |           |           |          |         |
| ROUTE          | MH4A  | MH3A  | 0.23 | 1.48 |         |           |          |         | 111    |      |      |           |             |            |        | 0.4          | 111     | 4.00       | 1.4   | 1.8   | 0.40  | 200      | 20.7      | 0.66      | 0.41     | 9%      |
|                |       |       |      |      |         |           |          |         |        |      |      |           |             |            |        |              |         |            |       |       |       |          |           |           |          |         |
| BLDG C & D     | SSWR3 | MH3A  | 1.28 | 1.28 |         |           |          | 746     | 746    |      |      |           |             |            |        | 0.4          | 746     | 3.88       | 9.2   | 9.6   | 0.50  | 200      | 23.2      | 0.74      | 0.70     | 41%     |
|                |       |       |      |      |         |           |          |         |        |      |      |           |             |            |        |              |         |            |       |       |       |          |           |           |          |         |
| BLDG E         | SSWR6 | MH3A  | 0.69 | 0.69 |         |           |          | 342     | 342    |      |      |           |             |            |        | 0.2          | 342     | 4.00       | 4.4   | 4.6   | 0.50  | 200      | 23.2      | 0.74      | 0.57     | 20%     |
|                |       |       |      |      |         |           |          |         |        |      |      |           |             |            |        |              |         |            |       |       |       |          |           |           |          |         |
| ROUTE          | MH3A  | MH2A  |      | 3.45 |         |           |          |         | 1199   |      |      |           |             |            |        | 1.0          | 1199    | 3.75       | 14.3  | 15.3  | 0.40  | 250      | 37.6      | 0.77      | 0.73     | 41%     |
| MUNICIPAL SSWR | MH2A  | MH1A  |      | 3.45 |         |           |          |         | 1199   |      |      |           |             |            |        | 1.0          | 1199    | 3.75       | 14.3  | 15.3  | 0.40  | 250      | 37.6      | 0.77      | 0.73     | 41%     |
|                | MH1A  | EX    |      | 3.45 |         |           |          |         | 1199   |      |      |           |             |            |        | 1.0          | 1199    | 3.75       | 14.3  | 15.3  |       | 250      |           |           |          |         |
|                |       |       |      |      |         |           |          |         |        |      |      |           |             |            |        |              |         |            |       |       |       |          |           |           |          |         |
| BLDG A & B     | SSWR2 | MH30A | 0.88 | 0.88 |         |           |          | 1013    | 1013   |      |      |           |             |            |        | 0.3          | 1013    | 3.80       | 12.2  | 12.5  | 1.00  | 200      | 32.8      | 1.04      | 0.97     | 38%     |
|                | MH30A | EX    |      | 0.88 |         |           |          |         | 1013   |      |      |           |             |            |        | 0.3          | 1013    | 3.80       | 12.2  | 12.5  | 1.00  | 200      | 32.8      | 1.04      | 0.97     | 38%     |
|                |       |       |      |      |         |           |          |         |        |      |      |           |             |            |        |              |         |            |       |       |       |          |           |           |          |         |
| BLDG F         | SSWR5 | MH70A | 0.56 | 0.56 |         |           |          | 528     | 528    |      |      |           |             |            |        | 0.2          | 528     | 3.96       | 6.7   | 6.8   | 1.00  | 200      | 32.8      | 1.04      | 0.82     | 21%     |
|                | MH70A | EX    |      | 0.56 |         |           |          |         | 528    |      |      |           |             |            |        | 0.2          | 528     | 3.96       | 6.7   | 6.8   | 1.00  | 200      | 32.8      | 1.04      | 0.82     | 21%     |
|                |       |       |      |      |         |           |          |         |        |      |      |           |             |            |        |              |         |            |       |       |       |          |           |           |          |         |
|                | EX    | MUN   |      | 4.89 |         |           |          |         | 2740   |      |      |           |             |            |        | 1.4          | 2740    | 3.48       | 30.3  | 31.7  | 0.40  | 525      | 272.0     | 1.26      | 0.84     | 12%     |

FOR DETAILED POPULATION INFORMATION REFER TO DRAWING C301

#### NOMINAL PIPE SIZE USED

Appendix D

**Oil and Grit Separator Design** 

![](_page_45_Picture_1.jpeg)

## **Brief Stormceptor Sizing Report - OGS1**

| Project Information & Location |                            |                            |           |  |  |  |  |  |
|--------------------------------|----------------------------|----------------------------|-----------|--|--|--|--|--|
| Project Name                   | Losani Fifth Wheel         | Project Number             | 300040159 |  |  |  |  |  |
| City                           | Town of Grimsby            | State/ Province            | Ontario   |  |  |  |  |  |
| Country                        | Canada                     | Date                       | 10/3/2019 |  |  |  |  |  |
| Designer Informatio            | n                          | EOR Information (optional) |           |  |  |  |  |  |
| Name                           | Erick Lopez                | Name                       |           |  |  |  |  |  |
| Company                        | R.J. Burnside              | Company                    |           |  |  |  |  |  |
| Phone #                        | 905-821-5933               | Phone #                    |           |  |  |  |  |  |
| Email                          | erick.lopez@rjburnside.com | Email                      |           |  |  |  |  |  |

#### **Stormwater Treatment Recommendation**

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

| Site Name                     | OGS1     |
|-------------------------------|----------|
| Target TSS Removal (%)        | 80       |
| TSS Removal (%) Provided      | 82       |
| Recommended Stormceptor Model | STC 4000 |

The recommended Stormceptor Model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

| Stormceptor Sizing Summary |                           |  |  |  |  |  |  |  |
|----------------------------|---------------------------|--|--|--|--|--|--|--|
| Stormceptor Model          | % TSS Removal<br>Provided |  |  |  |  |  |  |  |
| STC 300                    | 59                        |  |  |  |  |  |  |  |
| STC 750                    | 71                        |  |  |  |  |  |  |  |
| STC 1000                   | 72                        |  |  |  |  |  |  |  |
| STC 1500                   | 73                        |  |  |  |  |  |  |  |
| STC 2000                   | 76                        |  |  |  |  |  |  |  |
| STC 3000                   | 78                        |  |  |  |  |  |  |  |
| STC 4000                   | 82                        |  |  |  |  |  |  |  |
| STC 5000                   | 83                        |  |  |  |  |  |  |  |
| STC 6000                   | 85                        |  |  |  |  |  |  |  |
| STC 9000                   | 88                        |  |  |  |  |  |  |  |
| STC 10000                  | 88                        |  |  |  |  |  |  |  |
| STC 14000                  | 91                        |  |  |  |  |  |  |  |
| StormceptorMAX             | Custom                    |  |  |  |  |  |  |  |

## FORTERRA<sup>®</sup>

| Sizing Details   |                 |                          |                 |          |  |  |  |  |  |
|------------------|-----------------|--------------------------|-----------------|----------|--|--|--|--|--|
| Drainage         | Area            | Water Qu                 | ality Objective | 9        |  |  |  |  |  |
| Total Area (ha)  | 1.37            | TSS Removal (            | TSS Removal (%) |          |  |  |  |  |  |
| Imperviousness % | 77.00           | Runoff Volume Cap        |                 |          |  |  |  |  |  |
| Rainfa           | all             | Oil Spill Capture Vo     | lume (L)        |          |  |  |  |  |  |
| Station Name     | ST CATHARINES A | Peak Conveyed Flow       |                 |          |  |  |  |  |  |
| State/Province   | Ontario         | Water Quality Flow F     | Rate (L/s)      |          |  |  |  |  |  |
| Station ID #     | 7287            | Up Stre                  | am Storage      |          |  |  |  |  |  |
| Years of Records | 33              | Storage (ha-m)           | Dischar         | ge (cms) |  |  |  |  |  |
| Latitude         | 43°12'N         | 0.000                    |                 | 000      |  |  |  |  |  |
| Longitude        | 79°10'W         | Up Stream Flow Diversion |                 |          |  |  |  |  |  |

Max. Flow to Stormceptor (cms)

| Particle Size Distribution (PSD)<br>The selected PSD defines TSS removal |                   |                  |  |  |  |  |  |  |
|--------------------------------------------------------------------------|-------------------|------------------|--|--|--|--|--|--|
| Fine Distribution                                                        |                   |                  |  |  |  |  |  |  |
| Particle Diameter<br>(microns)                                           | Distribution<br>% | Specific Gravity |  |  |  |  |  |  |
| 20.0                                                                     | 20.0              | 1.30             |  |  |  |  |  |  |
| 60.0                                                                     | 20.0              | 1.80             |  |  |  |  |  |  |
| 150.0                                                                    | 20.0              | 2.20             |  |  |  |  |  |  |
| 400.0                                                                    | 20.0              | 2.65             |  |  |  |  |  |  |
| 2000.0                                                                   | 20.0              | 2.65             |  |  |  |  |  |  |
|                                                                          | Notos             |                  |  |  |  |  |  |  |

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.

For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design

assistance.

For Stormceptor Specifications and Drawings Please Visit: http://www.imbriumsystems.com/technical-specifications

![](_page_47_Picture_1.jpeg)

## **Brief Stormceptor Sizing Report - OGS2**

| Project Information & Location |                            |                            |           |  |  |  |  |  |
|--------------------------------|----------------------------|----------------------------|-----------|--|--|--|--|--|
| Project Name                   | Losani Fifth Wheel         | Project Number             | 300040159 |  |  |  |  |  |
| City                           | Town of Grimsby            | State/ Province            | Ontario   |  |  |  |  |  |
| Country                        | Canada                     | Date                       | 10/3/2019 |  |  |  |  |  |
| Designer Informatio            | n                          | EOR Information (optional) |           |  |  |  |  |  |
| Name                           | Erick Lopez                | Name                       |           |  |  |  |  |  |
| Company                        | R.J. Burnside              | Company                    |           |  |  |  |  |  |
| Phone #                        | 905-821-5933               | Phone #                    |           |  |  |  |  |  |
| Email                          | erick.lopez@rjburnside.com | Email                      |           |  |  |  |  |  |

#### **Stormwater Treatment Recommendation**

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

| Site Name                     | OGS2     |
|-------------------------------|----------|
| Target TSS Removal (%)        | 80       |
| TSS Removal (%) Provided      | 80       |
| Recommended Stormceptor Model | STC 5000 |

The recommended Stormceptor Model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

| Stormceptor Sizing Summary |                           |  |
|----------------------------|---------------------------|--|
| Stormceptor Model          | % TSS Removal<br>Provided |  |
| STC 300                    | 55                        |  |
| STC 750                    | 68                        |  |
| STC 1000                   | 69                        |  |
| STC 1500                   | 69                        |  |
| STC 2000                   | 74                        |  |
| STC 3000                   | 75                        |  |
| STC 4000                   | 79                        |  |
| STC 5000                   | 80                        |  |
| STC 6000                   | 83                        |  |
| STC 9000                   | 87                        |  |
| STC 10000                  | 86                        |  |
| STC 14000                  | 89                        |  |
| StormceptorMAX             | Custom                    |  |

## FORTERRA<sup>®</sup>

| Sizina                                                                                                          | Dotaila |
|-----------------------------------------------------------------------------------------------------------------|---------|
| JIZIIIU                                                                                                         | Details |
| the second se |         |

| Drainage Area    |                 | Water Quality Objective        |    |           |
|------------------|-----------------|--------------------------------|----|-----------|
| Total Area (ha)  | 1.39            | TSS Removal (%)                |    | 80.0      |
| Imperviousness % | 99.00           | Runoff Volume Capture (%)      |    |           |
| Rainfa           | all             | Oil Spill Capture Volume (L)   |    |           |
| Station Name     | ST CATHARINES A | Peak Conveyed Flow Rate (L/s)  |    |           |
| State/Province   | Ontario         | Water Quality Flow Rate (L/s)  |    |           |
| Station ID #     | 7287            | Up Stream Storage              |    |           |
| Years of Records | 33              | Storage (ha-m) Discharge (cms) |    | rge (cms) |
| Latitude         | 43°12'N         | 0.000                          | 0. | 000       |
| Longitude        | 79°10'W         | Up Stream Flow Diversion       |    | on        |
|                  |                 |                                |    |           |

Max. Flow to Stormceptor (cms)

| Particle Size Distribution (PSD)<br>The selected PSD defines TSS removal |                   |                  |
|--------------------------------------------------------------------------|-------------------|------------------|
| Fine Distribution                                                        |                   |                  |
| Particle Diameter<br>(microns)                                           | Distribution<br>% | Specific Gravity |
| 20.0                                                                     | 20.0              | 1.30             |
| 60.0                                                                     | 20.0              | 1.80             |
| 150.0                                                                    | 20.0              | 2.20             |
| 400.0                                                                    | 20.0              | 2.65             |
| 2000.0                                                                   | 20.0              | 2.65             |
| Notes                                                                    |                   |                  |

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal

defined by the selected PSD, and based on stable site conditions only, after construction is completed.

• For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

For Stormceptor Specifications and Drawings Please Visit: http://www.imbriumsystems.com/technical-specifications

![](_page_49_Picture_1.jpeg)

## **Brief Stormceptor Sizing Report - OGS3**

| Project Information & Location |                            |                            |           |
|--------------------------------|----------------------------|----------------------------|-----------|
| Project Name                   | Losani Fifth Wheel         | Project Number             | 300040159 |
| City                           | Town of Grimsby            | State/ Province            | Ontario   |
| Country                        | Canada                     | Date                       | 10/3/2019 |
| Designer Information E         |                            | EOR Information (optional) |           |
| Name                           | Erick Lopez                | Name                       |           |
| Company                        | R.J. Burnside              | Company                    |           |
| Phone #                        | 905-821-5933               | Phone #                    |           |
| Email                          | erick.lopez@rjburnside.com | Email                      |           |

#### **Stormwater Treatment Recommendation**

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

| Site Name                     | OGS3     |
|-------------------------------|----------|
| Target TSS Removal (%)        | 80       |
| TSS Removal (%) Provided      | 80       |
| Recommended Stormceptor Model | STC 3000 |

The recommended Stormceptor Model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

| Stormceptor Sizing Summary |                           |  |
|----------------------------|---------------------------|--|
| Stormceptor Model          | % TSS Removal<br>Provided |  |
| STC 300                    | 62                        |  |
| STC 750                    | 73                        |  |
| STC 1000                   | 74                        |  |
| STC 1500                   | 75                        |  |
| STC 2000                   | 78                        |  |
| STC 3000                   | 80                        |  |
| STC 4000                   | 83                        |  |
| STC 5000                   | 84                        |  |
| STC 6000                   | 86                        |  |
| STC 9000                   | 90                        |  |
| STC 10000                  | 90                        |  |
| STC 14000                  | 92                        |  |
| StormceptorMAX             | Custom                    |  |

## Stormceptor\*

## FORTERRA"

| Sizing Details   |                 |                                |  |          |
|------------------|-----------------|--------------------------------|--|----------|
| Drainage Area    |                 | Water Quality Objective        |  |          |
| Total Area (ha)  | 0.88            | <b>TSS Removal (%)</b> 80.0    |  | 80.0     |
| Imperviousness % | 99.00           | Runoff Volume Capture (%)      |  |          |
| Rainfa           | ll              | Oil Spill Capture Volume (L)   |  |          |
| Station Name     | ST CATHARINES A | Peak Conveyed Flow Rate (L/s)  |  |          |
| State/Province   | Ontario         | Water Quality Flow Rate (L/s)  |  |          |
| Station ID #     | 7287            | Up Stream Storage              |  |          |
| Years of Records | 33              | Storage (ha-m) Discharge (cms) |  | ge (cms) |
| Latitude         | 43°12'N         | 0.000 0.000                    |  | 000      |
| Longitude        | 79°10'W         | Up Stream Flow Diversion       |  | on       |
|                  |                 |                                |  |          |

Max. Flow to Stormceptor (cms)

| Particle Size Distribution (PSD)<br>The selected PSD defines TSS removal |                   |                  |  |
|--------------------------------------------------------------------------|-------------------|------------------|--|
|                                                                          | Fine Distribution |                  |  |
| Particle Diameter<br>(microns)                                           | Distribution<br>% | Specific Gravity |  |
| 20.0                                                                     | 20.0              | 1.30             |  |
| 60.0                                                                     | 20.0              | 1.80             |  |
| 150.0                                                                    | 20.0              | 2.20             |  |
| 400.0                                                                    | 20.0              | 2.65             |  |
| 2000.0                                                                   | 20.0              | 2.65             |  |
| Notos                                                                    |                   |                  |  |

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.

For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design

assistance.

For Stormceptor Specifications and Drawings Please Visit: http://www.imbriumsystems.com/technical-specifications

![](_page_51_Picture_1.jpeg)

## **Brief Stormceptor Sizing Report - OGS4**

| Project Information & Location |                            |                            |           |
|--------------------------------|----------------------------|----------------------------|-----------|
| Project Name                   | Losani Fifth Wheel         | Project Number             | 300040159 |
| City                           | Town of Grimsby            | State/ Province            | Ontario   |
| Country                        | Canada                     | Date                       | 10/3/2019 |
| Designer Information E         |                            | EOR Information (optional) |           |
| Name                           | Erick Lopez                | Name                       |           |
| Company                        | R.J. Burnside              | Company                    |           |
| Phone #                        | 905-821-5933               | Phone #                    |           |
| Email                          | erick.lopez@rjburnside.com | Email                      |           |

#### **Stormwater Treatment Recommendation**

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

| Site Name                     | OGS4     |
|-------------------------------|----------|
| Target TSS Removal (%)        | 80       |
| TSS Removal (%) Provided      | 81       |
| Recommended Stormceptor Model | STC 2000 |

The recommended Stormceptor Model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

| Stormceptor Sizing Summary |                           |  |
|----------------------------|---------------------------|--|
| Stormceptor Model          | % TSS Removal<br>Provided |  |
| STC 300                    | 65                        |  |
| STC 750                    | 76                        |  |
| STC 1000                   | 77                        |  |
| STC 1500                   | 77                        |  |
| STC 2000                   | 81                        |  |
| STC 3000                   | 82                        |  |
| STC 4000                   | 85                        |  |
| STC 5000                   | 86                        |  |
| STC 6000                   | 88                        |  |
| STC 9000                   | 91                        |  |
| STC 10000                  | 91                        |  |
| STC 14000                  | 93                        |  |
| StormceptorMAX             | Custom                    |  |

## FORTERRA<sup>®</sup>

| Sizing Details   |                 |                               |                 |      |  |  |  |  |  |
|------------------|-----------------|-------------------------------|-----------------|------|--|--|--|--|--|
| Drainage         | Area            | Water Quality Objective       |                 |      |  |  |  |  |  |
| Total Area (ha)  | 0.70            | TSS Removal (                 | %)              | 80.0 |  |  |  |  |  |
| Imperviousness % | 99.00           | Runoff Volume Cap             | ture (%)        |      |  |  |  |  |  |
| Rainfa           | ll              | Oil Spill Capture Volume (L)  |                 |      |  |  |  |  |  |
| Station Name     | ST CATHARINES A | Peak Conveyed Flow            |                 |      |  |  |  |  |  |
| State/Province   | Ontario         | Water Quality Flow Rate (L/s) |                 |      |  |  |  |  |  |
| Station ID #     | 7287            | Up Stream Storage             |                 |      |  |  |  |  |  |
| Years of Records | 33              | Storage (ha-m)                | Discharge (cms) |      |  |  |  |  |  |
| Latitude         | 43°12'N         | 0.000                         | 0.0             | 000  |  |  |  |  |  |
| Longitude        | 79°10'W         | Up Stream                     | Flow Diversion  | on   |  |  |  |  |  |

Max. Flow to Stormceptor (cms)

| Particle Size Distribution (PSD)<br>The selected PSD defines TSS removal |                   |                  |  |  |  |  |
|--------------------------------------------------------------------------|-------------------|------------------|--|--|--|--|
| Fine Distribution                                                        |                   |                  |  |  |  |  |
| Particle Diameter<br>(microns)                                           | Distribution<br>% | Specific Gravity |  |  |  |  |
| 20.0                                                                     | 20.0              | 1.30             |  |  |  |  |
| 60.0                                                                     | 20.0              | 1.80             |  |  |  |  |
| 150.0                                                                    | 20.0              | 2.20             |  |  |  |  |
| 400.0                                                                    | 20.0              | 2.65             |  |  |  |  |
| 2000.0                                                                   | 20.0              | 2.65             |  |  |  |  |
|                                                                          | Notos             |                  |  |  |  |  |

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal

defined by the selected PSD, and based on stable site conditions only, after construction is completed.

• For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

For Stormceptor Specifications and Drawings Please Visit: http://www.imbriumsystems.com/technical-specifications

![](_page_53_Picture_1.jpeg)

## **Brief Stormceptor Sizing Report - OGS5**

| Project Information & Location |                            |                            |           |  |  |  |  |  |
|--------------------------------|----------------------------|----------------------------|-----------|--|--|--|--|--|
| Project Name                   | Losani Fifth Wheel         | Project Number             | 300040159 |  |  |  |  |  |
| City                           | Town of Grimsby            | State/ Province            | Ontario   |  |  |  |  |  |
| Country                        | Canada                     | Date                       | 10/3/2019 |  |  |  |  |  |
| Designer Informatio            | n                          | EOR Information (optional) |           |  |  |  |  |  |
| Name                           | Erick Lopez                | Name                       |           |  |  |  |  |  |
| Company                        | R.J. Burnside              | Company                    |           |  |  |  |  |  |
| Phone #                        | 905-821-5933               | Phone #                    |           |  |  |  |  |  |
| Email                          | erick.lopez@rjburnside.com | Email                      |           |  |  |  |  |  |

#### **Stormwater Treatment Recommendation**

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

| Site Name                     | OGS5     |
|-------------------------------|----------|
| Target TSS Removal (%)        | 80       |
| TSS Removal (%) Provided      | 82       |
| Recommended Stormceptor Model | STC 2000 |

The recommended Stormceptor Model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

| Stormceptor Sizing Summary |                           |  |  |  |  |
|----------------------------|---------------------------|--|--|--|--|
| Stormceptor Model          | % TSS Removal<br>Provided |  |  |  |  |
| STC 300                    | 67                        |  |  |  |  |
| STC 750                    | 77                        |  |  |  |  |
| STC 1000                   | 78                        |  |  |  |  |
| STC 1500                   | 79                        |  |  |  |  |
| STC 2000                   | 82                        |  |  |  |  |
| STC 3000                   | 84                        |  |  |  |  |
| STC 4000                   | 87                        |  |  |  |  |
| STC 5000                   | 87                        |  |  |  |  |
| STC 6000                   | 89                        |  |  |  |  |
| STC 9000                   | 92                        |  |  |  |  |
| STC 10000                  | 92                        |  |  |  |  |
| STC 14000                  | 94                        |  |  |  |  |
| StormceptorMAX             | Custom                    |  |  |  |  |

## Stormceptor\*

## FORTERRA"

| Sizing Details   |                 |                               |                 |      |  |  |  |  |
|------------------|-----------------|-------------------------------|-----------------|------|--|--|--|--|
| Drainage         | Area            | Water Qua                     | ality Objective | 9    |  |  |  |  |
| Total Area (ha)  | 0.60            | TSS Removal (                 | %)              | 80.0 |  |  |  |  |
| Imperviousness % | 99.00           | Runoff Volume Cap             | ture (%)        |      |  |  |  |  |
| Rainfa           | ll              | Oil Spill Capture Volume (L)  |                 |      |  |  |  |  |
| Station Name     | ST CATHARINES A | Peak Conveyed Flow Rate (L/s) |                 |      |  |  |  |  |
| State/Province   | Ontario         | Water Quality Flow R          |                 |      |  |  |  |  |
| Station ID #     | 7287            | Up Stream Storage             |                 |      |  |  |  |  |
| Years of Records | 33              | Storage (ha-m)                | Discharge (cms) |      |  |  |  |  |
| Latitude         | 43°12'N         | 0.000                         | 0.              | 000  |  |  |  |  |
| Longitude        | 79°10'W         | Up Stream                     | Flow Diversion  | on   |  |  |  |  |
|                  |                 |                               |                 |      |  |  |  |  |

Max. Flow to Stormceptor (cms)

| Particle Size Distribution (PSD)<br>The selected PSD defines TSS removal |                   |                  |  |  |  |  |
|--------------------------------------------------------------------------|-------------------|------------------|--|--|--|--|
| Fine Distribution                                                        |                   |                  |  |  |  |  |
| Particle Diameter<br>(microns)                                           | Distribution<br>% | Specific Gravity |  |  |  |  |
| 20.0                                                                     | 20.0              | 1.30             |  |  |  |  |
| 60.0                                                                     | 20.0              | 1.80             |  |  |  |  |
| 150.0                                                                    | 20.0              | 2.20             |  |  |  |  |
| 400.0                                                                    | 20.0              | 2.65             |  |  |  |  |
| 2000.0                                                                   | 20.0              | 2.65             |  |  |  |  |
|                                                                          | Notos             |                  |  |  |  |  |

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal

defined by the selected PSD, and based on stable site conditions only, after construction is completed. • For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design

assistance.

For Stormceptor Specifications and Drawings Please Visit: http://www.imbriumsystems.com/technical-specifications

![](_page_55_Picture_0.jpeg)

Appendix E

Watercourse Hydraulic Analysis

# EXCERPTS FROM ODAN-DETECH (2005)

![](_page_57_Figure_0.jpeg)

SSSSS U U

| V  | v   | I     | SSSSS | U   | U   | I   | Ą   | L   |    |     |                                |
|----|-----|-------|-------|-----|-----|-----|-----|-----|----|-----|--------------------------------|
| v  | v   | I     | SS    | U   | U.  | А   | Α   | L   |    |     |                                |
| v  | v   | I     | SS    | U   | U   | AAA | AA/ | L   |    |     |                                |
| v  | . V | I     | SS    | U.  | U   | А   | А   | L   |    |     |                                |
| V  | v   | I     | SSSSS | UUU | JUU | А   | Α   | LLI | rr |     |                                |
| 00 | 0   | TTTTT | TTTTT | Н   | Н   | Y   | Y   | м   | м  | 000 | TM. Version 2.0                |
| 0  | 0   | Т     | Т     | H   | Н   | ·Υ  | Y   | MM  | MM | 0 0 | •                              |
| 0  | 0   | Т     | т     | Н   | н   | 3   | (   | М   | М  | 0 0 | Licensed To: Odan-Detech Group |
| 00 | ю   | Т     | Т     | Н   | н   | ١   | t   | м   | М  | 000 | V02-0059                       |

Developed and Distributed by Greenland International Consulting Inc. Copyright 1996, 2001 Schaeffer & Associates Ltd. All rights reserved.

\*\*\*\*\* DETAILED OUTPUT \*\*\*\*\*

Input filename: C:\Program Files\Visual OTTHYMO v2.0\voin.dat Output filename: F:\2002\02223\OTTHYMO MTO\LPL SITE DEVELOPED 100yr.out Summary filename: F:\2002\02223\OTTHYMO MTO\LPL SITE DEVELOPED 100yr.sum

DATE: 11/11/2005

v

TIME: 2:04:24 PM

USER:

COMMENTS:

\*\*\*\*\* \*\* SIMULATION NUMBER: 6 \*\* \*\*\*\*\*

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hrs<br>.20<br>.40                                  | mm/hr   hrs<br>1.84   3.20<br>1.84   3.40 | mm/hr  <br>3.68  <br>3.68 | hrs<br>6.20<br>6.40  | mm/hr   hrs<br>22.22   9.20<br>13.15   9.40  | mm/hr<br>3.68<br>3.68 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|---------------------------|----------------------|----------------------------------------------|-----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .60<br>.80<br>1.00                                 | 1.84   3.60<br>1.84   3.80<br>1.84   4.00 | 3.68  <br>3.68  <br>3.68  | 6.60<br>6.80<br>7.00 | 9.67   9.60<br>9.21   9.80<br>6.45   10.00   | 3.68<br>3.68<br>3.68  |
| 1.80       1.84       4.80       6.45       7.80       5.53       10.80       1.84         2.00       1.84       5.00       6.45       8.00       5.53       11.00       1.84         2.20       3.68       5.20       8.29       8.20       3.68       11.20       1.84         2.40       3.68       5.40       11.97       8.40       3.68       11.40       1.84         2.60       3.68       5.60       26.50       8.60       3.68       11.40       1.84         2.80       3.68       5.80       42.13       8.80       3.68       11.80       1.84         3.00       3.68       6.00       125.18       9.00       3.68       12.00       1.84 | 1.20<br>1.40<br>1.60                               | 1.84   4.20<br>1.84   4.40<br>1.84   4.60 | 6.45  <br>6.45  <br>6.45  | 7.20<br>7.40<br>7.60 | 5.53   10.20<br>5.53   10.40<br>5.53   10.60 | 1.84<br>1.84<br>1.84  |
| 2.40       3.68       5.20       5.29       6.29       5.20       3.68       11.20       1.84         2.40       3.68       5.40       11.97       8.40       3.68       11.40       1.84         2.60       3.68       5.60       26.50       8.60       3.68       11.60       1.84         2.80       3.68       5.80       42.13       8.80       3.68       11.80       1.84         3.00       3.68       6.00       125.18       9.00       3.68       12.00       1.84                                                                                                                                                                            | 1.80<br>2.00<br>2.20                               | 1.84   4.80<br>1.84   5.00<br>3.68   5.20 | 6.45  <br>6.45  <br>8.20  | 7.80                 | 5.53   10.80<br>5.53   11.00                 | 1.84                  |
| 3.00 3.68   6.00 125.18   9.00 3.68   12.00 1.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.40<br>2.60<br>2.80                               | 3.68   5.40<br>3.68   5.60                | 11.97  <br>26.50          | 8.40                 | 3.68   11.20<br>3.68   11.40<br>3.68   11.60 | 1.84                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.00                                               | 3.68   5.80                               | 42.13  <br>125.18         | 9.00                 | 3.68   11.80                                 | 1.84                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CALIB  <br>  NASHYD (6181)  <br> ID= 1 DT= 2.0 min | Area (ha)=<br>Ia (mm)=<br>U.H. Tp(hrs)=   | .55 Cu<br>3.00 #<br>.20   | irve Nur<br>of Line  | mber (CN)= 69.(<br>ear Res.(N)= 3.0(         | )                     |
| CALIB  <br>  NASHYD (6181)   Area (ha)= .55 Curve Number (CN)= 69.0<br> ID= 1 DT= 2.0 min   Ia (mm)= 3.00 # of Linear Res.(N)= 3.00<br>U.H. Tp(hrs)= .20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NOTE: RAINFA                                       | ALL WAS TRANSFORM                         | IED TO 2.                 | .0 MIN.              | TIME STEP.                                   |                       |

---- TRANSFORMED HYETOGRAPH ----TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr .033 1.84 | 3.033 3.68 | 6.033 22.23 | 9.03 3.68 .067 1.84 | 3.067 1.84 | 3.100 3.68 | 6.067 22.22 | 9.07 3.68 .100 3.68 | 6.100 22.22 | 9.10 3.68 .133 1.84 | 3.133 3.68 | 6.133 22.22 | 9.13 3.68

| 1 ( 7   | 1 04  |             |        |         |        |         |       |
|---------|-------|-------------|--------|---------|--------|---------|-------|
| .10/    | 1.84  | 1 3.16/     | 3.68   | 6.167   | 22.22  | 9.17    | 3.68  |
| .200    | 1.84  | 3.200       | 3.68   | 6.200   | 22.22  | 1 9.20  | 3.68  |
| .233    | 1.84  | 1 3.233     | 3 68   | 6 233   | 13 15  | . 0.23  | 3 68  |
| 267     | 1 94  | 1 2 267     | 3.00   | 0.200   | 10.10  | 1 9.23  | 5.00  |
| .207    | 1.04  | 1 3.201     | 3.68   | 0.26/   | 13.15  | 9.27    | 3.68  |
| .300    | 1.84  | 3.300       | 3.68   | 1 6.300 | 13.15  | 1 9.30  | 3.68  |
| .333    | 1.84  | 1 3.333     | 3.68   | 6.333   | 13.15  | 9.33    | 3.68  |
| 367     | 1 8/  | 3 367       | . 2 60 | 1 6 267 | 12 15  | 0.37    | 2     |
|         | 1.04  | 1 3.307     | 5.00   | 0.30/   | 13.15  | 9.37    | 3.00  |
| .400    | 1.84  | 3.400       | 3.68   | 6.400   | 13.15  | 9.40    | 3.68  |
| .433    | 1.84  | 1 3.433     | 3.68   | 6.433   | 9 67   | 943     | 3 68  |
| 167     | 1 04  | 1 3 467     | 5.00   | 0.400   | 5.07   |         | 5.00  |
| .40/    | 1.84  | 3.407       | 3.68   | 6.467   | 9.67   | 9.47    | 3.68  |
| .500    | 1.84  | 3.500       | 3.68   | 6.500   | 9.67   | 9.50    | 3.68  |
| .533    | 1 84  | 1 3 5 3 3   | 3 68   | 6 633   | 9 67   | 0.53    | 2 60  |
| 567     | 1 04  | 1 2 5 6 7 7 | 5.00   | 0.555   | 9.07   | 9.55    | 5.00  |
| . 36 /  | 1.84  | 3.56/       | 3.68   | 6.567   | 9,67   | 9.57    | 3.68  |
| .600    | 1.84  | 3.600       | 3.68   | 6.600   | 9.67   | 1 9.60  | 3.68  |
| .633    | 1.84  | 1 3.633     | 3 68   | 6 633   | 9 21   | 9 63    | 3 68  |
| 667     | 1 94  | 1 2 667     | 2.00   |         | 0.01   | 1 0.03  | 5.00  |
| .007    | 1.04  | 1 3.00/     | 3.68   | 0.00/   | 9.21   | 9.6/    | 3.68  |
| .700    | 1.84  | 3.700       | 3.68   | 6.700   | 9.21   | 9.70    | 3.68  |
| .733    | 1.84  | 1 3.733     | 3.68   | 6 7 3 3 | 9 21   | 973     | 3 68  |
| 767     | 1 0 / | 1 2 767     | 2.00   |         | 0.01   | 0.77    | 5.00  |
| . /0/   | 1.04  | 1 3.101     | 3.68   | 0./6/   | 9.21   | 9.77    | 3.68  |
| .800    | 1.84  | 3.800       | 3.68   | 6.800   | 9.21   | 9.80    | 3.68  |
| .833    | 1.84  | 1 3 833     | 3 68   | 6 833   | 6 45   | 0 03    | 3 69  |
| 067     | 1 0 4 | 0.000       | 3.00   | 0.000   | 0.45   | 9.05    | 5.00  |
| .00/    | 1.84  | 3.86/       | 3.68   | 6.867   | 6.45   | 9.87    | 3.68  |
| .900    | 1.84  | 3.900       | 3.68   | 6.900   | 6.45   | 9.90    | 3.68  |
| .933    | 1.84  | 3,933       | 3.68   | 6 933   | 6 45   | 0 03    | 3 68  |
| 067     | 1 0 / | 1 2 067     | 2.00   |         | 6.45   | 0.03    | 5.00  |
| . 907   | 1.04  | 1 3.96/     | 3.68   | 0.967   | 6.45   | 9.97    | 3.68  |
| 1.000   | 1.84  | 4.000       | 3.68   | 7.000   | 6.45   | 10.00   | 3.68  |
| 1.033   | 1.84  | 4.033       | 6.45   | 1 7 033 | 5 5 3  | 10 03   | 1 84  |
| 1 067   | 1 94  | 1 1 067     | 6 10   | 7 0 7 7 | 5.55   | 10.03   | 1 04  |
| 1.007   | 1.04  | 4.007       | 0.45   | 1.067   | 5.53   | 10.07   | 1.84  |
| 1.100   | 1.84  | 4.100       | 6.45   | 7.100   | 5.53   | 10.10   | 1.84  |
| 1.133   | 1.84  | 4.133       | 6.45   | 7.133   | 5 53   | 10 13   | 1 84  |
| 1 167   | 1 9/  | 1 1 167     | 6 46   | 7 1 67  | 5.55   | 10.17   | 1.04  |
| 1.107   | 1.04  | 4.107       | 0.45   | 1 1.10/ | 5.53   | 1 10.17 | 1.84  |
| 1.200   | 1.84  | 4.200       | 6.45   | 7.200   | 5.53   | 10.20   | 1.84  |
| 1.233   | 1.84  | 4.233       | 6.45   | 7.233   | 5 53   | 1 10 23 | 1 84  |
| 1 267   | 1 9/  | 1 1 267     | 6 45   |         | 5.55   | 10.23   | 1.04  |
| 1.207   | 1.04  | 4.207       | 0.45   | 1.207   | 5.53   | 1 10.27 | 1.84  |
| 1.300   | 1.84  | 1 4.300     | 6.45   | 7.300   | 5.53   | 10.30   | 1.84  |
| 1.333   | 1.84  | 4.333       | 6.45   | 7.333   | 5.53   | 10.33   | 1.84  |
| 1 367   | 1 0/  | 1 267       | 6 A E  |         | 5.00   | 10.00   | 1 0 4 |
| 1.307   | 1.04  | 4.307       | 0.45   | 1.30/   | 5.53   | 1 10.31 | 1.84  |
| 1.400   | 1.84  | 4.400       | 6.45   | 7.400   | 5.53   | 10.40   | 1.84  |
| 1.433   | 1.84  | 4.433       | 6.45   | 1 7 433 | 5 53   | 10 43   | 1 84  |
| 1 467   | 1 0/  | 1 4 467     | 6 16   | 7 4 6 7 | 5.55   | 10.47   | 1 04  |
| 1.407   | 1.04  | 4.407       | 6,45   | 1.467   | 5.53   | 10.4/   | 1.84  |
| 1.500   | 1.84  | 4.500       | 6.45   | 7.500   | 5.53   | 10.50   | 1.84  |
| 1.533   | 1.84  | 4.533       | 6.45   | 7.533   | 5.53   | 10.53   | 1.84  |
| 1.567   | 1 84  | 1 4 567     | 6 15   | 7 567   | 5 5 2  | 10 67   | 1 01  |
| 1 600   | 1.04  | 1 1.507     | 0.45   | 7.507   | 5.55   | 10.57   | 1.04  |
| 1.600   | 1.84  | 4.600       | 6.45   | 7.600   | 5.53   | 10.60   | 1.84  |
| 1.633   | 1.84  | 4.633       | 6.45   | 7.633   | 5.53   | 10.63   | 1.84  |
| 1.667   | 1 84  | 1 4 667     | 6 45   | 7 667   | 5 5 2  | 10 67   | 1 0 4 |
| 1 700   | 1.04  | 1 1.007     | 0.45   | 7.007   | 5.55   | 10.07   | 1.04  |
| 1.700   | 1.84  | 4./00       | 6.45   | 7.700   | 5.53   | 10.70   | 1.84  |
| 1.733   | 1.84  | 4.733       | 6.45   | 7.733   | 5.53   | 10.73   | 1.84  |
| 1.767   | 1.84  | 4.767       | 6 4 5  | 7 767   | 5 53   | 10 77   | 1 84  |
| 1 900   | 1 04  | 1 4 000     | 6.45   | 7.000   | 5.55   | 10.77   | 1.04  |
| 1.000   | 1.04  | 4.800       | 0.45   | /.800   | 5.53   | 10.80   | 1.84  |
| 1.833   | 1.84  | 4.833       | 6.45   | 7.833   | 5.53   | 10.83   | 1.84  |
| 1.867   | 1.84  | 4.867       | 6.45   | 7.867   | 5 53   | 10.87   | 1 84  |
| 1 900   | 1 84  | 1 000       | 6 15   | 7 000   | 5 5 5  | 10 00   | 1 04  |
| 1 000   | 1.04  | 4.900       | 0.45   | 7.900   | 5.53   | 10.90   | 1.84  |
| 1.933   | 1.84  | 4.933       | 6.45   | 7.933   | 5.53   | 10.93   | 1.84  |
| 1.967   | 1.84  | 4.967       | 6.45   | 7.967   | 5.53   | 10.97   | 1.84  |
| 2.000   | 1 84  | 5.000       | 6 15   | 8 000   | 5 6 2  | 11 00   | 1 04  |
| 2 0 2 2 | 2.03  |             | 0.40   | 0.000   | 0.00   | 11.00   | 1.04  |
| 2.033   | 3.68  | 1 2.033     | 8.29   | 8.033   | 3.68   | 11.03   | 1.84  |
| 2.067   | 3.68  | 1 5.067     | 8.29   | 8.067   | 3.68   | 11.07   | 1.84  |
| 2.100   | 3.68  | 5,100       | 8.29   | 8,100   | 3 68   | 11.10   | 1.84  |
| 2.133   | 3 69  | 5 1 2 2     | 8 20   | 0 1 3 3 | 3 20   | 11 13   | 1 04  |
| 0 1/7   | 2.00  |             | 0.29   | 0.133   | 3.08   | 11.12   | 1.04  |
| 2.10/   | 3.68  | 1 5.167     | 8.29   | 8.167   | 3.68   | 11.17   | 1.84  |
| 2.200   | 3.68  | 1 5.200     | 8.29   | 8.200   | 3.68   | 11.20   | 1.84  |
| 2.233   | 3 68  | 1 5 233     | 11 07  | 8 222   | 3 60   | 11 22   | 1 04  |
| 0.000   | 2.00  |             | ++.9/  | 0.233   | 3.00   | 11.23   | 1.04  |
| 2.201   | 3.68  | 5.267       | 11.97  | 8.267   | 3.68   | 11.27   | 1.84  |
| 2.300   | 3.68  | 5.300       | 11.97  | 8.300   | 3.68   | 11.30   | 1.84  |
| 2,333   | 3.68  | 5.333       | 11.07  | 8.333   | 3 69   | 11 22   | 1 94  |
| 2 367   | 3 60  | 5 367       | 11 07  | 0.000   | 3.00   | 11 22   | 1.04  |
| 2.30/   | 3.08  | 5.36/       | 11.9/  | 8.367   | 3.68   | 11.37   | 1.84  |
| 2.400   | 3.68  | 5.400       | 11.97  | 8.400   | 3.68   | 11.40   | 1.84  |
| 2.433   | 3.68  | 5.433       | 26.50  | 8.433   | 3.68   | 11.43   | 1,84  |
| 2 467   | 3 69  | 5 167       | 26 50  | 0 167   | 3 60 1 | 11 47   | 1 04  |
| 0 600   | 5.00  | 5.40/       | 20.00  | 0.40/   | 3.68   | 11.4/   | 1.84  |
| 2.500   | 3.68  | 1 5.500     | 26.50  | 8.500   | 3.68   | 11.50   | 1.84  |
| 2.533   | 3.68  | 5.533       | 26.50  | 8.533   | 3.68   | 11.53   | 1,84  |
| 2 567   | 3 69  | 5 5 6 7     | 26 50  | 0 6 4 7 | 2.00   | 11 57   | 1 04  |
| 2.307   | 5.00  | 5.30/       | 20.00  | 0.30/   | 3.68   | 11.2/   | 1.84  |
| 2.600   | 3.68  | 5.600       | 26.50  | 8.600   | 3.68   | 11.60   | 1.84  |
| 2.633   | 3.68  | 5.633       | 42.13  | 8.633   | 3.68   | 11.63   | 1.84  |
| 2.667   | 3 68  | 5 667       | 42 13  | 9 667   | 3 20   | 11 47   | 1 04  |
| 2 200   | 2.00  | 5.007       | 44.13  | 0.00/   | 3.00   | 11.0/   | 1.04  |
| 2.700   | 3.68  | 5.700       | 42.13  | 8.700   | 3.68   | 11.70   | 1.84  |
| 2.733   | 3.68  | 5.733       | 42.13  | 8.733   | 3.68   | 11.73   | 1.84  |
| 2.767   | 3.68  | 5.767       | 42 13  | 8 767   | 3 69   | 11 77   | 1 94  |
| 2 000   | 2.00  | 5.107       | 42.13  | 0.707   | 3.00   | 11.//   | 1.04  |
| 2.000   | 3.68  | 5.800       | 42.13  | 8.800   | 3.68   | 11.80   | 1.84  |
| 2.833   | 3.68  | 5.833       | 125.17 | 8.833   | 3.68   | 11.83   | 1.84  |

3.68 | 5.867 125.18 | 8.867 3.68 | 5.900 125.18 | 8.900 3.68 | 5.933 125.18 | 8.933 3.68 | 5.967 125.18 | 8.967 2.867 3.68 | 11.87 1.84 2.900 3.68 | 11.90 1.84 2.933 3.68 | 11.93 1.84 2.967 3.68 | 11.97 1.84 3.000 3.68 | 6.000 125.18 | 9.000 3.68 | 12.00 1.84 Unit Hyd Qpeak (cms)= .105 PEAK FLOW (cms) =.056 (i) (hrs) = 6.100TIME TO PEAK (mm) = 36.965RUNOFF VOLUME TOTAL RAINFALL (mm) = 89.014RUNOFF COEFFICIENT = .415 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. ------| CALIB | NASHYD (6142) | Area (ha)= 61.70 Curve Number (CN)= 69.0 |ID= 1 DT= 2.0 min | Ia (mm)= 3.00 # of Linear Res.(N)= 3.00 ----- U.H. Tp(hrs)= .60 Unit Hyd Qpeak (cms)= 3.928 2.993 (i) 6.533 PEAK FLOW (cms) = TIME TO PEAK (hrs)= 6.533 RUNOFF VOLUME (mm)= 36.968 TOTAL RAINFALL (mm)= 89.014 RUNOFF COEFFICIENT = .415 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. \_\_\_\_\_ | CALIB 1 | STANDHYD (6141) | (ha) = 24.50Area |ID= 1 DT= 2.0 min | Total Imp(%) = 30.00 Dir. Conn.(%) = 5.00 ------IMPERVIOUS PERVIOUS (i) 7.35 Surface Area (ha)= 17.15 Dep. Storage (mm) = 1.00 5.00 Average Slope ( % ) = 1.00 1.00 Length (m) = 150.00 40.00 Mannings n = .013 .250 Max.Eff.Inten.(mm/hr)= 125.18 81.10 5.00 14.00 2.98 (ii) 12.43 (ii) over (min) Storage Coeff. (min) = 14.00 Unit Hyd. Tpeak (min)= 4.00 Unit Hyd. peak (cms)= .33 .09 \*TOTALS\* PEAK FLOW .42 (cms) = 2.22 2.334 (iii) TIME TO PEAK TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = 6.00 6.13 6.13 88.01 35.52 38.14 89.01 89.01 89.01 RUNOFF COEFFICIENT = .99 .40 .43 \*\*\*\*\* WARNING:FOR AREAS WITH IMPERVIOUS RATIOS BELOW 20% YOU SHOULD CONSIDER SPLITTING THE AREA. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN\* = 61.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. | ADD HYD (6143) | 1 + 2 = 3AREA OPEAK TPEAK R.V. -----(hrs) 6.53 (ha) (Cms) (mm) ID1 = 1 (6142): 61.70 2.993 36.97 + ID2= 2 (6141): 24.50 2.334 6.13 38.14 ID = 3 (6143): 86.20 4.359 6.20 37.30 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 

| CALIB  <br>  STANDHYD (1107)   Area (ha)=<br> ID= 1 DT= 2.0 min   Total Imp(%)=                                                                                                         | 5.52<br>60.00 Dir. Conn.(%)=                                                                                                                                  | = 60.00                                                       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|
| IMPERVSurface Area(ha) =3.Dep. Storage(mm) =1.Average Slope(%) =1.Length(m) =350.Mannings n=.0                                                                                          | IOUS         PERVIOUS (i)           31         2.21           00         5.00           00         1.00           00         350.00           13         .250 |                                                               |  |
| Max.Eff.Inten.(mm/hr)= 125.<br>over (min) 5.<br>Storage Coeff. (min)= 4.<br>Unit Hyd. Tpeak (min)= 4.<br>Unit Hyd. peak (cms)= .                                                        | 18       15.78         00       72.00         95 (ii)       71.77 (ii)         00       72.00         24       .02                                            |                                                               |  |
| PEAK FLOW (cms)= 1.<br>TIME TO PEAK (hrs)= 6.<br>RUNOFF VOLUME (mm)= 88.<br>TOTAL RAINFALL (mm)= 89.<br>RUNOFF COEFFICIENT = .                                                          | 06 .05<br>00 7.13<br>01 28.64<br>01 89.01<br>99 .32                                                                                                           | TOTALS*<br>1.073 (iii)<br>6.00<br>64.26<br>89.01<br>.72       |  |
| <ul> <li>(i) CN PROCEDURE SELECTED FOR<br/>CN* = 61.0 Ia = Dep</li> <li>(ii) TIME STEP (DT) SHOULD BE<br/>THAN THE STORAGE COEFFICI</li> <li>(iii) PEAK FLOW DOES NOT INCLUE</li> </ul> | PERVIOUS LOSSES:<br>. Storage (Above)<br>SMALLER OR EQUAL<br>ENT.<br>E BASEFLOW IF ANY.                                                                       |                                                               |  |
| ADD HYD (6179)  <br>  1 + 2 = 3   AREA<br>  ID1 = 1 (6143): 86.20<br>+ ID2 = 2 (1107): 5.52                                                                                             | QPEAK TPEAK R.V.<br>(cms) (hrs) (mm)<br>4.359 6.20 37.30<br>1.073 6.00 64.26                                                                                  |                                                               |  |
| NOTE: PEAK FLOWS DO NOT INCLUD                                                                                                                                                          | 4.003 6.17 38.92<br>E BASEFLOWS IF ANY.                                                                                                                       |                                                               |  |
| ADD HYD (6180)  <br>  1 + 2 = 3   AREA<br>(ha)<br>ID1= 1 (6181): .55<br>+ ID2= 2 (6179): 91.72                                                                                          | QPEAK TPEAK R.V.<br>(cms) (hrs) (mm)<br>.056 6.10 36.97<br>4.683 6.17 38.92                                                                                   |                                                               |  |
| ID = 3 (6180): 92.27<br>NOTE: PEAK FLOWS DO NOT INCLUD                                                                                                                                  | 4.736 6.17 38.91<br>E BASEFLOWS IF ANY.                                                                                                                       | ·<br>                                                         |  |
| ROUTE CHN (6144)  <br>  IN= 2> OUT= 1   Routing tim                                                                                                                                     | e step (min)'= 2.00                                                                                                                                           |                                                               |  |
| < DATA FOR SECT<br>Distance Elevati<br>.00 1.5<br>4.50 .0<br>7.50 1.0<br>16.50 1.0<br>19.50 .0<br>24.00 1.5                                                                             | ION ( 1.0)><br>on Manning<br>0 .0500<br>0 .0500 /.0300 Mai<br>0 .0300 /.0500 Mai<br>0 .0500<br>0 .0500                                                        | n Channel<br>n Channel                                        |  |
| <pre>&lt; TRAVEL DEPTH ELEV VOLUME (m) (m) (cu.m.) .08 .08 .107E+02 .15 .15 .426E+02 .23 .23 .959E+02 .31 .31 .170E+03 .38 .38 .266E+03</pre>                                           | TIME TABLE<br>FLOW RATE VELOCITY<br>(cms) (m/s)<br>.0 .23<br>.1 .36<br>.2 .47<br>.3 .57<br>.6 .66                                                             | TRAV.TIME<br>(min)<br>22.07<br>13.90<br>10.61<br>8.76<br>7.55 |  |
| .46 .46 .383E+03<br>.54 .54 .522E+03                                                                                                                                                    | 1.0 .75<br>1.4 .83                                                                                                                                            | 6.68<br>6.03                                                  |  |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                           | 22+03       2.1         32+03       2.8         72+04       3.7         92+04       4.8         32+04       6.1         02+04       7.5         32+04       10.0         72+04       13.3         32+04       17.2         02+04       21.7         32+04       26.8         72+04       32.5 | .91<br>.98<br>1.05<br>1.12<br>1.19<br>1.25<br>1.29<br>1.38<br>1.50<br>1.63<br>1.76<br>1.88 | 5.52<br>5.10<br>4.76<br>4.46<br>4.21<br>3.99<br>3.89<br>3.61<br>3.33<br>3.07<br>2.85<br>2.66 |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| INFLOW : ID= 2 (6180)<br>OUTFLOW: ID= 1 (6144)                                                                                                 | <pre>&lt; h AREA QPEAR (ha) (cms) 92.27 4.74 92.27 4.64</pre>                                                                                                                                                                                                                                 | ydrograph><br>TPEAK R.V.<br>(hrs) (mm)<br>6.17 38.91<br>6.23 38.91                         | <-pipe / channel-><br>MAX DEPTH MAX VEL<br>(m) (m/s)<br>.84 1.12<br>.83 1.11                 |
| CALIB  <br>  STANDHYD (1108)   Area<br> ID= 1 DT= 2.0 min   Total                                                                              | (ha)= 4.10<br>L Imp(%)= 85.00                                                                                                                                                                                                                                                                 | Dir. Conn.(%)=                                                                             | 85.00                                                                                        |
| Surface Area(ha)=Dep. Storage(mm)=Average Slope(%)=Length(m)=Mannings n=                                                                       | IMPERVIOUS<br>3.49<br>1.00<br>1.00<br>300.00<br>.013                                                                                                                                                                                                                                          | PERVIOUS (i)<br>.61<br>5.00<br>1.00<br>300.00<br>.250                                      |                                                                                              |
| <pre>Max.Eff.Inten.(mm/hr)=</pre>                                                                                                              | 125.18<br>5.00<br>4.51 (ii)<br>4.00<br>.26                                                                                                                                                                                                                                                    | 15.78<br>66.00<br>65.43 (ii)<br>66.00<br>.02                                               | TOTALS*                                                                                      |
| PEAK FLOW (cms)=<br>TIME TO PEAK (hrs)=<br>RUNOFF VOLUME (mm)=<br>TOTAL RAINFALL (mm)=<br>RUNOFF COEFFICIENT =                                 | 1.14<br>6.00<br>88.01<br>89.01<br>.99                                                                                                                                                                                                                                                         | .02<br>7.03<br>28.64<br>89.01<br>.32                                                       | 1.140 (iii)<br>6.00<br>79.10<br>89.01<br>.89                                                 |
| <ul> <li>(i) CN PROCEDURE SELF<br/>CN* = 61.0</li> <li>(ii) TIME STEP (DT) SF<br/>THAN THE STORAGE</li> <li>(iii) PEAK FLOW DOES NO</li> </ul> | CCTED FOR PERVIC<br>Ia = Dep. Stora<br>HOULD BE SMALLER<br>COEFFICIENT.<br>DT INCLUDE BASEF                                                                                                                                                                                                   | US LOSSES:<br>ge (Above)<br>OR EQUAL<br>LOW IF ANY.                                        |                                                                                              |
|                                                                                                                                                |                                                                                                                                                                                                                                                                                               |                                                                                            | · · ·                                                                                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                          | AREA QPEAK<br>(ha) (cms)<br>92.27 4.644                                                                                                                                                                                                                                                       | TPEAK R.V.<br>(hrs) (mm)<br>6.23 38.91                                                     |                                                                                              |
| ID = 3 (6158):<br>NOTE: PEAK FLOWS DO NO                                                                                                       | 96.37 4.938                                                                                                                                                                                                                                                                                   | 6.20 40.62                                                                                 |                                                                                              |
|                                                                                                                                                |                                                                                                                                                                                                                                                                                               |                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                        |
| CALIB  <br>  STANDHYD (6163)   Area<br> ID= 1 DT= 2.0 min   Tota]                                                                              | (ha)= .16<br>Imp(%)= 85.00                                                                                                                                                                                                                                                                    | Dir. Conn.(%)=                                                                             | 85.00                                                                                        |
| Surface Area(ha)=Dep. Storage(mm)=Average Slope(%)=Length(m)=Mannings n=                                                                       | IMPERVIOUS<br>.14<br>1.00<br>1.00<br>32.70<br>.013                                                                                                                                                                                                                                            | PERVIOUS (1)<br>.02<br>7.50<br>2.00<br>40.00<br>.250                                       |                                                                                              |
| Max.Eff.Inten.(mm/hr)=<br>over (min)<br>Storage Coeff. (min)=                                                                                  | 125.18<br>5.00<br>1.19 (ii)                                                                                                                                                                                                                                                                   | 79.71<br>6.00<br>4.42 (ii)                                                                 |                                                                                              |

| Unit Hyd. Tpeak  | (min) = | 4.00  | 6.00  |            |
|------------------|---------|-------|-------|------------|
| Unit Hyd. peak   | (cms) = | .49   | .23   |            |
|                  |         |       |       | *TOTALS*   |
| PEAK FLOW        | (cms) = | .05   | .00   | .052 (iii) |
| TIME TO PEAK     | (hrs) = | 6.00  | 6.00  | 6.00       |
| RUNOFF VOLUME    | (mm) =  | 88.01 | 45.82 | 81.67      |
| TOTAL RAINFALL   | (mm) =  | 89.01 | 89.01 | 89.01      |
| RUNOFF COEFFICIE | ENT =   | .99   | .51   | .92        |
|                  |         |       |       |            |

\*\*\*\*\* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN\* = 80.0 Ia = Dep. Storage (Above)
   (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB  <br>  STANDHYD (6161)  <br> ID= 1 DT= 2.0 min                                                                  | Area<br>Total I                                           | (ha)=<br>mp(%)=                                              | 3.07<br>85.00                                  | Dir. (                                | Conn.(%)=       | = 85.00 |      |  |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|---------------------------------------|-----------------|---------|------|--|
|                                                                                                                       |                                                           | IMPERVIO                                                     | us i                                           | PERVIOUS                              | 5 (i)           |         |      |  |
| Surface Area                                                                                                          | (ha) =                                                    | 2.61                                                         |                                                | .46                                   | 5 (1)           |         |      |  |
| Dep. Storage                                                                                                          | (mm) =                                                    | 1.00                                                         |                                                | 7.50                                  |                 |         |      |  |
| Average Slope                                                                                                         | ( % ) =                                                   | 1.00                                                         |                                                | 2.00                                  |                 |         |      |  |
| Length                                                                                                                | (m) =                                                     | 143.10                                                       |                                                | 40.00                                 |                 |         |      |  |
| Mannings n                                                                                                            | -                                                         | .013                                                         |                                                | .250                                  |                 |         |      |  |
| Max.Eff.Inten.(mm                                                                                                     | n/hr)=                                                    | 125.18                                                       |                                                | 79.71                                 |                 |         |      |  |
| over                                                                                                                  | (min)                                                     | 5.00                                                         |                                                | 8.00                                  |                 |         |      |  |
| Storage Coeff.                                                                                                        | (min) =                                                   | 2.90                                                         | (ii)                                           | 6.12                                  | (ii)            |         |      |  |
| Unit Hyd. Tpeak                                                                                                       | (min) =                                                   | 4.00                                                         |                                                | 8.00                                  |                 |         |      |  |
| Unit Hyd. peak (                                                                                                      | (cms) =                                                   | .34                                                          |                                                | .17                                   |                 |         |      |  |
|                                                                                                                       |                                                           |                                                              |                                                |                                       | *               | TOTALS* |      |  |
| PEAK FLOW                                                                                                             | (cms) =                                                   | .89                                                          |                                                | .08                                   |                 | .971 (  | iii) |  |
| TIME TO PEAK                                                                                                          | (hrs) =                                                   | 6.00                                                         |                                                | 6.03                                  |                 | 6.00    |      |  |
| RUNOFF VOLUME                                                                                                         | (mm) =                                                    | 88.01                                                        |                                                | 45.82                                 |                 | 81.68   |      |  |
| TOTAL RAINFALL                                                                                                        | (mm) =                                                    | 89.01                                                        |                                                | 89.01                                 |                 | 89.01   |      |  |
| RUNOFF COEFFICIEN                                                                                                     | •T =                                                      | .99                                                          |                                                | .51                                   |                 | .92     |      |  |
| <ul> <li>(i) CN PROCEDUF<br/>CN* = 80</li> <li>(ii) TIME STEP (<br/>THAN THE ST</li> <li>(iii) PEAK FLOW D</li> </ul> | RE SELECT<br>).0 Ia<br>(DT) SHOU<br>CORAGE CO<br>DOES NOT | ED FOR PH<br>= Dep. 3<br>LD BE SMA<br>EFFICIENT<br>INCLUDE H | ERVIOUS<br>Storage<br>ALLER C<br>F.<br>BASEFLC | LOSSES<br>(Abox<br>R EQUAI<br>W IF AN | 5:<br>/e)<br>// |         |      |  |
| RESERVOIR (6162)                                                                                                      |                                                           |                                                              |                                                |                                       |                 |         |      |  |
| IN = 2 > OUT = 1                                                                                                      | o                                                         |                                                              |                                                |                                       |                 |         |      |  |
| D1= 2.0 min                                                                                                           | OUTFL                                                     | OW STO                                                       | ORAGE                                          | I OUI                                 | FLOW            | STORAGE |      |  |
|                                                                                                                       | (cms                                                      | ) (ha                                                        | a.m.)                                          | (c                                    | cms)            | (ha.m.) |      |  |
|                                                                                                                       | .00                                                       | 00                                                           | .0000                                          |                                       | 7000            | .0500   |      |  |
|                                                                                                                       |                                                           | AREA                                                         | OPFA                                           | кт                                    | PFAK            | ΡV      |      |  |
|                                                                                                                       |                                                           | (ha)                                                         | (cme                                           | ). I                                  | hre)            | /mm \   |      |  |
| INFLOW : ID= 2 (6                                                                                                     | 5161)                                                     | 3.07                                                         | ( - 113                                        | 7                                     | 6 00            | 81 69   |      |  |
| OUTFLOW: ID= 1 (6                                                                                                     | 5162)                                                     | 3.07                                                         | 6                                              | 5                                     | 6.07            | 81 69   |      |  |
|                                                                                                                       |                                                           | J.J.                                                         | • •                                            | -                                     | 0.01            | 01.00   |      |  |

PEAKFLOWREDUCTION [Qout/Qin] (%) = 66.77TIME SHIFT OF PEAK FLOW(min) = 4.00 TIME SHIFT OF PEAK FLOW (min)= 4.00 MAXIMUM STORAGE USED (ha.m.)= .0470

------| ADD HYD (6176) | | 1 + 2 = 3 | AREA QPEAK TPEAK R.V. (hrs) (mm) TPEAN (hrs) (Hum, 6.00 81.67 1 07 81.68 (ha) (cms) ID1= 1 (6163): + ID2= 2 (6162): .16 .052 3.07 .648 -----ID = 3 (6176):3.23 .682 6.03 81.68

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

\_\_\_\_\_

-----

| L CALTR                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                             |                                                              |                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------|
| STANDHYD (6165)  <br> ID= 1 DT= 2.0 min                                                                                                                                                                                                                                                                                                                                                       | Area<br>Total                                                                                     | (ha)=<br>Imp(%)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dir. C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | onn.(%)=                                                                    | 85.00                                                        |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   | TMDEDUTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                             |                                                              |                                       |
| Surface Area                                                                                                                                                                                                                                                                                                                                                                                  | (ha)=                                                                                             | .41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | US 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1)                                                                         |                                                              |                                       |
| Dep. Storage                                                                                                                                                                                                                                                                                                                                                                                  | (mm) =                                                                                            | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             |                                                              |                                       |
| Length                                                                                                                                                                                                                                                                                                                                                                                        | (8)=<br>(m)=                                                                                      | 56.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                              |                                       |
| Mannings n                                                                                                                                                                                                                                                                                                                                                                                    | =                                                                                                 | .013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             |                                                              |                                       |
| Max.Eff.Inten.(                                                                                                                                                                                                                                                                                                                                                                               | mm/hr)=                                                                                           | 125.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 84.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                              |                                       |
| over<br>Storage Coeff                                                                                                                                                                                                                                                                                                                                                                         | (min)                                                                                             | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (::)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ( : : )                                                                     |                                                              |                                       |
| Unit Hyd. Tpeak                                                                                                                                                                                                                                                                                                                                                                               | (min) =                                                                                           | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (11)                                                                        |                                                              |                                       |
| Unit Hyd. peak                                                                                                                                                                                                                                                                                                                                                                                | (cms) =                                                                                           | .44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . *                                                                         | TOTALCX                                                      |                                       |
| PEAK FLOW                                                                                                                                                                                                                                                                                                                                                                                     | (cms) =                                                                                           | .14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             | .157 (                                                       | iii)                                  |
| TIME TO PEAK<br>RUNOFF VOLUME                                                                                                                                                                                                                                                                                                                                                                 | (hrs) = (mm) =                                                                                    | 6.00<br>88.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             | 6.00                                                         |                                       |
| TOTAL RAINFALL                                                                                                                                                                                                                                                                                                                                                                                | (mm) =                                                                                            | 89.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             | 89.01                                                        |                                       |
| RUNOFF COEFFICI                                                                                                                                                                                                                                                                                                                                                                               | ENT =                                                                                             | .99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             | .93                                                          |                                       |
| ***** WARNING: STORA                                                                                                                                                                                                                                                                                                                                                                          | GE COEFF.                                                                                         | IS SMALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ER THAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N TIME S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TEP!                                                                        |                                                              |                                       |
| (i) CN PROCED                                                                                                                                                                                                                                                                                                                                                                                 | URE SELEC                                                                                         | TED FOR P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ERVIOUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                                                           |                                                              |                                       |
| CN* =                                                                                                                                                                                                                                                                                                                                                                                         | 80.0                                                                                              | [a = Dep. S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e (Abov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e)                                                                          |                                                              |                                       |
| (11) TIME STEP<br>THAN THE                                                                                                                                                                                                                                                                                                                                                                    | STORAGE (                                                                                         | DULD BE SMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALLER C<br>F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OR EQUAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                             |                                                              |                                       |
| (iii) PEAK FLOW                                                                                                                                                                                                                                                                                                                                                                               | DOES NOT                                                                                          | INCLUDE E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BASEFLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W IF AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Υ.                                                                          |                                                              |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                             |                                                              |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                             |                                                              |                                       |
| ADD HYD (6174)                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                             |                                                              |                                       |
| 1 + 2 = 3                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                   | AREA QI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TPEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R.V.                                                                        |                                                              |                                       |
| ID1= 1 (61                                                                                                                                                                                                                                                                                                                                                                                    | 76):                                                                                              | 3.23 .6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (nrs)<br>6.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (mm)<br>81.68                                                               |                                                              |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                             |                                                              |                                       |
| + ID2= 2 (61                                                                                                                                                                                                                                                                                                                                                                                  | 65):                                                                                              | .48 .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 82.41                                                                       |                                                              |                                       |
| + ID2= 2 (61<br>ID = 3 (61                                                                                                                                                                                                                                                                                                                                                                    | 65):<br>                                                                                          | .48 .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 157<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.00<br>6.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82.41<br>81.77                                                              |                                                              |                                       |
| + ID2= 2 (61<br>=========<br>ID = 3 (61<br>NOTE: PEAK FLO                                                                                                                                                                                                                                                                                                                                     | 65):<br>74):<br>WS DO NOT                                                                         | .48 .1<br>3.71 .8<br>T INCLUDE E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 157<br>308<br>BASEFLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.00<br>6.03<br>DWS IF A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 82.41<br>81.77                                                              |                                                              |                                       |
| + ID2= 2 (61<br>ID = 3 (61<br>NOTE: PEAK FLO                                                                                                                                                                                                                                                                                                                                                  | 65):<br>74):<br>WS DO NOT                                                                         | .48 .1<br>3.71 .8<br>1 INCLUDE E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 157<br>308<br>BASEFLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.00<br>6.03<br>DWS IF A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 82.41<br>81.77<br>NY.                                                       |                                                              |                                       |
| + ID2= 2 (61<br>ID = 3 (61<br>NOTE: PEAK FLO                                                                                                                                                                                                                                                                                                                                                  | 65):<br>74):<br>WS DO NO1                                                                         | .48 .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 157<br>308<br>BASEFLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.00<br>6.03<br>DWS IF A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 82.41<br>81.77<br>NY.                                                       |                                                              |                                       |
| + ID2= 2 (61<br>ID = 3 (61<br>NOTE: PEAK FLO<br>CALIB  <br>STANDHYD (6167)                                                                                                                                                                                                                                                                                                                    | 65):<br>74):<br>WS DO NOT<br>                                                                     | .48 .1<br>3.71 .6<br>7 INCLUDE F<br>(ha) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 157<br>308<br>BASEFLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.00<br>6.03<br>DWS IF A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 82.41<br>81.77<br>NY.                                                       |                                                              |                                       |
| + ID2= 2 (61<br>ID = 3 (61<br>NOTE: PEAK FLO<br>                                                                                                                                                                                                                                                                                                                                              | 65):<br>74):<br>WS DO NOT<br><br>Area<br>Total                                                    | .48 .1<br>3.71 .8<br>7 INCLUDE E<br>(ha) =<br>Imp(%) = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 157<br>308<br>BASEFLC<br>.79<br>95.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.00<br>6.03<br>DWS IF AD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 82.41<br>81.77<br>NY.                                                       | 95.00                                                        |                                       |
| + ID2= 2 (61<br>ID = 3 (61<br>NOTE: PEAK FLO<br>CALIB  <br>STANDHYD (6167)  <br>ID= 1 DT= 2.0 min                                                                                                                                                                                                                                                                                             | 65):<br>74):<br>WS DO NOT<br><br>Area<br>Total                                                    | .48 .1<br>3.71 .6<br>TINCLUDE F<br>(ha) =<br>Imp(%) = 9<br>IMPERVIOU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 157<br>308<br>3ASEFLC<br>.79<br>95.00<br>JS F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.00<br>6.03<br>DWS IF AN<br>Dir. Co<br>PERVIOUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 82.41<br>81.77<br>NY.<br>conn.(%)=<br>(i)                                   | 95.00                                                        |                                       |
| + ID2= 2 (61<br>ID = 3 (61<br>NOTE: PEAK FLO<br>CALIB  <br>STANDHYD (6167)  <br>ID= 1 DT= 2.0 min  <br>Surface Area<br>Dep. Storage                                                                                                                                                                                                                                                           | 65):<br>74):<br>WS DO NO<br>Area<br>Total<br>(ha)=<br>(mm)=                                       | .48 .1<br>3.71 .6<br>5 INCLUDE E<br>(ha) =<br>Imp(%) = 5<br>1000 .75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 157<br>308<br>BASEFLC<br>.79<br>95.00<br>JS F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.00<br>6.03<br>DWS IF AL<br>Dir. Co<br>PERVIOUS<br>.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 82.41<br>81.77<br>NY.<br>conn.(%)=<br>(i)                                   | 95.00                                                        |                                       |
| + ID2= 2 (61<br>ID = 3 (61<br>NOTE: PEAK FLO<br>CALIB  <br>  CALIB  <br>  STANDHYD (6167)  <br> ID= 1 DT= 2.0 min  <br>Surface Area<br>Dep. Storage<br>Average Slope                                                                                                                                                                                                                          | 65):<br>74):<br>WS DO NO<br>Area<br>Total<br>(ha)=<br>(mm)=<br>(%)=                               | .48 .1<br>3.71 .6<br>C INCLUDE F<br>(ha) =<br>Imp(%) = 9<br>IMPERVIOU<br>.75<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 157<br>308<br>BASEFLC<br>.79<br>95.00<br>JS F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.00<br>6.03<br>DWS IF AD<br>Dir. Co<br>PERVIOUS<br>.04<br>1.50<br>2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 82.41<br>81.77<br>NY.<br>Donn.(%)=                                          | 95.00                                                        |                                       |
| + ID2= 2 (61<br>ID = 3 (61<br>NOTE: PEAK FLO<br>CALIB  <br>STANDHYD (6167)  <br>ID= 1 DT= 2.0 min  <br>Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Manpings p                                                                                                                                                                                                                  | 65):<br><br>WS DO NOT<br><br>Area<br>Total<br>(ha) =<br>(mm) =<br>(%) =<br>(m) =<br>(m) =         | .48 .1<br>3.71 .6<br>C INCLUDE F<br>(ha) =<br>Imp(%) = 9<br>IMPERVIOU<br>.75<br>1.00<br>1.00<br>72.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 157<br>308<br>BASEFLC<br>.79<br>95.00<br>JS F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.00<br>6.03<br>DWS IF AD<br>Dir. Co<br>PERVIOUS<br>.04<br>1.50<br>2.00<br>40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 82.41<br>81.77<br>NY.                                                       | 95.00                                                        |                                       |
| + ID2= 2 (61<br>ID = 3 (61<br>NOTE: PEAK FLO<br>CALIB  <br>STANDHYD (6167)  <br>ID= 1 DT= 2.0 min  <br>Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n                                                                                                                                                                                                                  | 65):<br><br>WS DO NOT<br>Area<br>Total<br>(ha)=<br>(mm)=<br>(%)=<br>(m)=<br>=                     | .48 .1<br>3.71 .6<br>C INCLUDE F<br>(ha) =<br>Imp(%) = S<br>IMPERVIOU<br>.75<br>1.00<br>1.00<br>72.60<br>.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 157<br>308<br>BASEFLC<br>.79<br>95.00<br>JS F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.00<br>6.03<br>DWS IF A<br>Dir. Co<br>PERVIOUS<br>.04<br>1.50<br>2.00<br>40.00<br>.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 82.41<br>81.77<br>NY.<br>onn.(%)=<br>(i)                                    | 95.00                                                        |                                       |
| + ID2= 2 (61<br>ID = 3 (61<br>NOTE: PEAK FLO<br>CALIB  <br>STANDHYD (6167)  <br>ID= 1 DT= 2.0 min  <br>Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>Max.Eff.Inten.(                                                                                                                                                                                               | 65):<br>                                                                                          | .48 .1<br>3.71 .6<br>C INCLUDE F<br>(ha)=<br>Imp(%)= S<br>IMPERVIOU<br>.75<br>1.00<br>1.00<br>72.60<br>.013<br>125.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 157<br>308<br>BASEFLC<br>79<br>95.00<br>JS F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.00<br>6.03<br>DWS IF A<br>Dir. Co<br>PERVIOUS<br>.04<br>1.50<br>2.00<br>40.00<br>.250<br>84.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 82.41<br>81.77<br>NY.                                                       | 95.00                                                        |                                       |
| + ID2= 2 (61<br>ID = 3 (61<br>NOTE: PEAK FLO<br>CALIB  <br>STANDHYD (6167)  <br>ID= 1 DT= 2.0 min  <br>Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>Max.Eff.Inten.(<br>over<br>Storage Coeff.                                                                                                                                                                     | 65):<br>                                                                                          | .48 .1<br>3.71 .6<br>C INCLUDE F<br>(ha) =<br>Imp(%) = S<br>IMPERVIOU<br>.75<br>1.00<br>1.00<br>72.60<br>.013<br>125.18<br>5.00<br>1.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 157<br>308<br>BASEFLC<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.00<br>6.03<br>DWS IF AD<br>Dir. Co<br>PERVIOUS<br>.04<br>1.50<br>2.00<br>40.00<br>.250<br>84.50<br>4.00<br>3.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <pre>82.41 81.77 NY. onn.(%)= (i) (ii)</pre>                                | 95.00                                                        |                                       |
| <pre>+ ID2= 2 (61</pre>                                                                                                                                                                                                                                                                                                                                                                       | <pre>65): 74): WS DO NOT Area Total (ha)= (mm)= (%)= (m)= (min) (min)= (min)= (min)= (min)=</pre> | .48 .1<br>3.71 .8<br>5 INCLUDE F<br>(ha) =<br>Imp(%) = 9<br>IMPERVIOU<br>.75<br>1.00<br>1.00<br>72.60<br>.013<br>125.18<br>5.00<br>1.93<br>4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 157<br>308<br>3ASEFLC<br>.79<br>95.00<br>JS F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.00<br>6.03<br>0WS IF AD<br>Dir. Co<br>Dir. Co<br>PERVIOUS<br>.04<br>1.50<br>2.00<br>40.00<br>.250<br>84.50<br>4.00<br>3.91<br>4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 82.41<br>81.77<br>NY.<br>onn.(%)=<br>(i)<br>(ii)                            | 95.00                                                        |                                       |
| + ID2= 2 (61<br>ID = 3 (61<br>NOTE: PEAK FLO<br>CALIB  <br>STANDHYD (6167)  <br>ID= 1 DT= 2.0 min  <br>Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>Max.Eff.Inten.(<br>over<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>Unit Hyd. peak                                                                                                                                | <pre>65): 74): WS DO NOT Area Total (ha)= (mm)= (%)= (m)= (min)= (min)= (min)= (cms)=</pre>       | .48 .1<br>3.71 .8<br>5 INCLUDE E<br>(ha) =<br>Imp(%) = 5<br>IMPERVIOU<br>.75<br>1.00<br>1.00<br>72.60<br>.013<br>125.18<br>5.00<br>1.93<br>4.00<br>.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 157<br>308<br>BASEFLC<br>.79<br>95.00<br>JS F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.00<br>6.03<br>DWS IF AD<br>Dir. Ca<br>PERVIOUS<br>.04<br>1.50<br>2.00<br>40.00<br>.250<br>84.50<br>4.00<br>3.91<br>4.00<br>.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <pre>82.41 81.77 NY. onn.(%)= (i) (ii) **</pre>                             | 95.00<br>POTALS*                                             | · · · · · · · · · · · · · · · · · · · |
| + ID2= 2 (61<br>ID = 3 (61<br>NOTE: PEAK FLO<br>CALIB  <br>STANDHYD (6167)  <br>ID= 1 DT= 2.0 min  <br>Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>Max.Eff.Inten.(<br>over<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>Unit Hyd. peax                                                                                                                                | <pre>65): ====================================</pre>                                              | .48 .1<br>3.71 .6<br>1 INCLUDE F<br>(ha) =<br>Imp(%) = 9<br>IMPERVIOU<br>.75<br>1.00<br>1.00<br>72.60<br>.013<br>125.18<br>5.00<br>1.93<br>4.00<br>.41<br>.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 157<br>308<br>BASEFLC<br>.79<br>95.00<br>JS F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.00<br>6.03<br>WS IF A<br>Dir. Co<br>PERVIOUS<br>.04<br>1.50<br>2.00<br>40.00<br>.250<br>84.50<br>4.00<br>3.91<br>4.00<br>.28<br>.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <pre>82.41 81.77 NY. onn.(%)= (i) (ii) **</pre>                             | 95.00<br>POTALS*<br>.269 (:                                  | <br>111)                              |
| + ID2= 2 (61<br>ID = 3 (61<br>NOTE: PEAK FLO<br>CALIB  <br>STANDHYD (6167)  <br>ID= 1 DT= 2.0 min  <br>Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>Max.Eff.Inten.(<br>over<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>PEAK FLOW<br>TIME TO PEAK<br>RUNOFF VOLUME                                                                                                    | <pre>65): ====================================</pre>                                              | .48 .1<br>3.71 .6<br>C INCLUDE F<br>Imp(%) = S<br>IMPERVIOU<br>.75<br>1.00<br>1.00<br>72.60<br>.013<br>125.18<br>5.00<br>1.93<br>4.00<br>.41<br>.26<br>6.00<br>88.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 157<br>308<br>BASEFLC<br>.79<br>95.00<br>JS F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.00<br>6.03<br>WS IF A<br>Dir. Co<br>PERVIOUS<br>.04<br>1.50<br>2.00<br>40.00<br>.250<br>84.50<br>4.00<br>3.91<br>4.00<br>.28<br>.01<br>6.00<br>50.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 82.41<br>81.77<br>NY.<br>onn.(%)=<br>(i)                                    | 95.00<br>95.00<br>IOTALS*<br>.269 (1<br>6.00<br>86.15        | <br>                                  |
| <pre>+ ID2= 2 (61</pre>                                                                                                                                                                                                                                                                                                                                                                       | <pre>65): ====================================</pre>                                              | .48 .1<br>3.71 .6<br>TINCLUDE F<br>(ha)=<br>Imp(%)= 5<br>IMPERVIOU<br>.75<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.0 | 157<br>308<br>BASEFLC<br>.79<br>95.00<br>JS F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.00<br>6.03<br>0WS IF AJ<br>Dir. Co<br>PERVIOUS<br>.04<br>1.50<br>2.00<br>40.00<br>.250<br>84.50<br>4.00<br>3.91<br>4.00<br>.28<br>.01<br>6.00<br>50.71<br>89.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <pre>82.41 81.77 NY. onn.(%)= (i) (ii) **</pre>                             | 95.00<br>95.00<br>.269 (1<br>6.00<br>86.15<br>89.01          |                                       |
| <pre>+ ID2= 2 (61</pre>                                                                                                                                                                                                                                                                                                                                                                       | <pre>65):</pre>                                                                                   | .48 .1<br>3.71 .6<br>5 INCLUDE F<br>Imp(%) = 9<br>IMPERVIOU<br>.75<br>1.00<br>1.00<br>72.60<br>.013<br>125.18<br>5.00<br>1.93<br>4.00<br>.41<br>.26<br>6.00<br>88.01<br>89.01<br>.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 157<br>308<br>BASEFLC<br>.79<br>95.00<br>JS F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.00<br>6.03<br>0WS IF AD<br>Dir. Co<br>PERVIOUS<br>.04<br>1.50<br>2.00<br>40.00<br>.250<br>84.50<br>4.00<br>3.91<br>4.00<br>.28<br>.01<br>6.00<br>50.71<br>89.01<br>.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <pre>82.41 81.77 NY. onn.(%)= (i) (ii)</pre>                                | 95.00<br>POTALS*<br>.269 (:<br>6.00<br>86.15<br>89.01<br>.97 | 111)                                  |
| + ID2= 2 (61<br>ID = 3 (61<br>NOTE: PEAK FLO<br>CALIB  <br>STANDHYD (6167)  <br>ID= 1 DT= 2.0 min  <br>Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>Max.Eff.Inten.(<br>over<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>Unit Hyd. Tpeak<br>Unit Hyd. peak<br>PEAK FLOW<br>TIME TO PEAK<br>RUNOFF VOLUME<br>TOTAL RAINFALL<br>RUNOFF COEFFICI<br>****** WARNING: STORA | <pre>65):</pre>                                                                                   | .48 .1<br>3.71 .8<br>S INCLUDE E<br>(ha) =<br>Imp(%) = 9<br>IMPERVIOU<br>.75<br>1.00<br>1.00<br>72.60<br>.013<br>125.18<br>5.00<br>1.93<br>4.00<br>.41<br>.26<br>6.00<br>8.01<br>89.01<br>.99<br>IS SMALLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 157<br>308<br>3ASEFLC<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.00<br>6.03<br>0WS IF AD<br>Dir. Co<br>PERVIOUS<br>.04<br>1.50<br>2.00<br>40.00<br>.250<br>84.50<br>4.00<br>3.91<br>4.00<br>.28<br>.01<br>6.00<br>50.71<br>89.01<br>.57<br>4.11ME S <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <pre>82.41 81.77 NY. Onn.(%)= (i) (ii) **</pre>                             | 95.00<br>POTALS*<br>.269 (1<br>6.00<br>86.15<br>89.01<br>.97 | iii)                                  |
| <pre>+ ID2= 2 (61</pre>                                                                                                                                                                                                                                                                                                                                                                       | <pre>65): ====================================</pre>                                              | .48 .1<br>3.71 .6<br>TINCLUDE F<br>Imp(%) = S<br>IMPERVIOU<br>.75<br>1.00<br>1.00<br>7.5<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09 | 157<br>308<br>BASEFLC<br>.79<br>95.00<br>JS F<br>(ii)<br>(ii)<br>CR THAN<br>CR THAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.00<br>6.03<br>0WS IF AJ<br>Dir. Co<br>PERVIOUS<br>.04<br>1.50<br>2.00<br>40.00<br>.250<br>84.50<br>4.00<br>3.91<br>4.00<br>.28<br>.01<br>6.00<br>50.71<br>89.01<br>.57<br>TIME ST<br>5 LOSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>82.41 81.77 NY. onn.(%)= (i) (ii) ******************************</pre> | 95.00<br>POTALS*<br>.269 (1<br>6.00<br>86.15<br>89.01<br>.97 |                                       |
| <pre>+ ID2= 2 (61</pre>                                                                                                                                                                                                                                                                                                                                                                       | <pre>65):</pre>                                                                                   | .48 .1<br>3.71 .6<br>SINCLUDE F<br>Imp(%) = S<br>IMPERVIOU<br>.75<br>1.00<br>1.00<br>72.60<br>.013<br>125.18<br>5.00<br>1.93<br>4.00<br>.41<br>.26<br>6.00<br>88.01<br>89.01<br>.99<br>IS SMALLE<br>TED FOR PE<br>a = Dep. S<br>SMALLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 157<br>308<br>BASEFLC<br>.79<br>95.00<br>JS F<br>(ii)<br>(ii)<br>CR THAN<br>CR THAN<br>CR THAN<br>CR THAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.00<br>6.03<br>0WS IF AD<br>Dir. Co<br>PERVIOUS<br>.04<br>1.50<br>2.00<br>40.00<br>.250<br>84.50<br>4.00<br>3.91<br>4.00<br>.28<br>.01<br>6.00<br>50.71<br>89.01<br>.57<br>TIME ST<br>E LOSSES<br>CABOVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <pre>82.41 81.77 NY. (ii) (iii) *** FEP! :=&gt;)</pre>                      | 95.00<br>POTALS*<br>.269 (:<br>6.00<br>86.15<br>89.01<br>.97 |                                       |
| <pre>+ ID2= 2 (61</pre>                                                                                                                                                                                                                                                                                                                                                                       | <pre>65):</pre>                                                                                   | .48 .1<br>3.71 .6<br>TINCLUDE F<br>IMP(%) = 9<br>IMPERVIOU<br>.75<br>1.00<br>1.00<br>72.60<br>.013<br>125.18<br>5.00<br>1.93<br>4.00<br>.41<br>.26<br>6.00<br>88.01<br>89.01<br>.99<br>IS SMALLE<br>TED FOR PE<br>a = Dep. S<br>JULD BE SMA<br>COEFFICIENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 157<br>308<br>BASEFLC<br>.79<br>95.00<br>JS F<br>(ii)<br>(ii)<br>CR THAN<br>CR THAN<br>CR THAN<br>CR THAN<br>CR THAN<br>CR THAN<br>CR THAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.00<br>6.03<br>0WS IF AD<br>Dir. Co<br>PERVIOUS<br>.04<br>1.50<br>2.00<br>40.00<br>.250<br>84.50<br>4.00<br>3.91<br>4.00<br>.28<br>.01<br>6.00<br>50.71<br>89.01<br>.57<br>4 TIME SC<br>2 LOSSES<br>2 (Above<br>DR EQUAL<br>W IF AD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <pre>82.41 81.77 NY. onn.(%)= (i) (ii) ******************************</pre> | 95.00<br>POTALS*<br>.269 (1<br>6.00<br>86.15<br>89.01<br>.97 |                                       |
| <pre>+ ID2= 2 (61</pre>                                                                                                                                                                                                                                                                                                                                                                       | <pre>65):<br/></pre>                                                                              | .48 .1<br>3.71 .6<br>S INCLUDE E<br>Imp(%) = S<br>IMPERVIOU<br>.75<br>1.00<br>72.60<br>.013<br>125.18<br>5.00<br>1.93<br>4.00<br>.41<br>.26<br>6.00<br>8.01<br>89.01<br>.99<br>IS SMALLE<br>STED FOR PE<br>CTED FOR PE<br>SMALLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 157<br>308<br>BASEFLC<br>.79<br>95.00<br>JS F<br>(ii)<br>(ii)<br>CR THAN<br>CR TH | 6.00<br>6.03<br>0WS IF AD<br>Dir. Co<br>PERVIOUS<br>.04<br>1.50<br>2.00<br>40.00<br>.250<br>84.50<br>4.00<br>3.91<br>4.00<br>.28<br>.01<br>6.00<br>50.71<br>89.01<br>.57<br>I TIME S <sup>2</sup><br>84.50<br>Constant State S | <pre>82.41 81.77 NY. (ii) (ii) *** FEP! :=&gt;) </pre>                      | 95.00<br>95.00<br>269 (1<br>6.00<br>86.15<br>89.01<br>.97    | iii)                                  |
| <pre>+ ID2= 2 (61</pre>                                                                                                                                                                                                                                                                                                                                                                       | <pre>65): ====================================</pre>                                              | .48 .1<br>3.71 .6<br>TINCLUDE F<br>Imp(%) = S<br>IMPERVIOU<br>.75<br>1.00<br>1.00<br>72.60<br>.013<br>125.18<br>5.00<br>1.00<br>1.25.18<br>5.00<br>1.00<br>1.03<br>125.18<br>5.00<br>1.03<br>125.18<br>5.00<br>1.03<br>125.18<br>5.00<br>1.03<br>125.18<br>5.00<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.00<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.04<br>1.03<br>1.04<br>1.03<br>1.03<br>1.04<br>1.03<br>1.03<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1.04<br>1     | 157<br>308<br>BASEFLC<br>.79<br>95.00<br>JS F<br>(ii)<br>(ii)<br>CR THAN<br>CRVIOUS<br>Storage<br>LLER O<br>BASEFLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.00<br>6.03<br>WS IF AJ<br>Dir. Co<br>PERVIOUS<br>.04<br>1.50<br>2.00<br>40.00<br>.250<br>84.50<br>4.00<br>3.91<br>4.00<br>.28<br>.01<br>6.00<br>50.71<br>89.01<br>.57<br>I TIME ST<br>8 LOSSES<br>PR EQUAL<br>W IF AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <pre>82.41 81.77 NY. onn.(%)= (i) (ii) ******************************</pre> | 95.00<br>POTALS*<br>.269 (1<br>6.00<br>86.15<br>89.01<br>.97 |                                       |
| <pre>+ ID2= 2 (61</pre>                                                                                                                                                                                                                                                                                                                                                                       | 65):<br>                                                                                          | .48 .1<br>3.71 .6<br>INCLUDE F<br>IMP(%) = 9<br>IMPERVIOU<br>.75<br>1.00<br>1.00<br>72.60<br>.013<br>125.18<br>5.00<br>1.93<br>4.00<br>.41<br>.26<br>6.00<br>88.01<br>89.01<br>.99<br>IS SMALLE<br>TED FOR PE<br>a = Dep. S<br>DULD BE SMA<br>DEFFICIENT<br>INCLUDE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 157<br>308<br>BASEFLC<br>.79<br>95.00<br>JS F<br>(ii)<br>(ii)<br>CR THAN<br>CRVIOUS<br>Storage<br>ALLER O<br>Storage<br>ALLER O<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.00<br>6.03<br>WS IF A<br>Dir. Co<br>PERVIOUS<br>.04<br>1.50<br>2.00<br>40.00<br>.250<br>84.50<br>4.00<br>3.91<br>4.00<br>.28<br>.01<br>6.00<br>50.71<br>89.01<br>.57<br>I TIME ST<br>E LOSSES<br>C Above<br>DW IF AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <pre>82.41 81.77 NY. onn.(%)= (i) (ii) *** TEP! : ) (.</pre>                | 95.00<br>POTALS*<br>.269 (:<br>6.00<br>86.15<br>89.01<br>.97 | 111)                                  |

| ID= | 1 DT= 2.0 min !  | Total   | Imp(%)=  | 99.00 | Dir. (  | Conn.(%)= | 99.00 | C     |
|-----|------------------|---------|----------|-------|---------|-----------|-------|-------|
|     |                  |         | IMPERVIC | US    | PERVIOU | 5 (i)     |       |       |
|     | Surface Area     | (ha) =  | .84      |       | .01     |           |       |       |
|     | Dep. Storage     | (mm) =  | 1.00     |       | 1.50    |           |       |       |
|     | Average Slope    | ( % ) = | 1.00     |       | 2.00    |           |       |       |
|     | Length           | (m) =   | 75.30    |       | 40.00   |           |       |       |
|     | Mannings n       | =       | .013     |       | .250    |           |       |       |
|     | Max.Eff.Inten.(m | m/hr)=  | 125.18   |       | 95.86   |           |       |       |
|     | over             | (min)   | 5.00     |       | 4.00    | 111 A.    |       |       |
|     | Storage Coeff.   | (min) = | 1.97     | (ii)  | 3.00    | (ii)      |       |       |
|     | Unit Hyd. Tpeak  | (min) = | 4.00     |       | 4.00    |           |       |       |
|     | Unit Hyd. peak   | (cms) = | .41      |       | .33     |           |       |       |
|     |                  |         |          |       |         | *1        | TALS  | ł     |
|     | PEAK FLOW        | (cms) = | .29      |       | .00     |           | .294  | (iii) |
|     | TIME TO PEAK     | (hrs) = | 6.00     |       | 6.00    |           | 6.00  | ,,    |
|     | RUNOFF VOLUME    | (mm) =  | 88.01    |       | 57.87   |           | 87.71 |       |
|     | TOTAL RAINFALL   | (mm) =  | 89.01    |       | 89.01   |           | 89.01 |       |
|     | RUNOFF COEFFICIE | INT =   | .99      |       | .65     |           | .99   |       |

\*\*\*\*\* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- $CN^* = 85.0$  Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

\_\_\_\_\_

- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| ADD HYD (6175)                          |          |           |           |             |      |
|-----------------------------------------|----------|-----------|-----------|-------------|------|
| 1 + 2 = 3                               | AREA     | QPEAK     | TPEAK     | R.V.        |      |
|                                         | (ha)     | (cms)     | (hrs)     | (mm)        |      |
| ID1= 1 (6167):                          | .79      | .269      | 6.00      | 86.15       |      |
| + ID2= 2 (6168):                        | .85      | .294      | 6.00      | 87.71       |      |
| ======================================= |          |           |           |             |      |
| ID = 3 (6175):                          | 1.64     | .563      | 6.00      | 86.96       |      |
| NOTE: PEAK FLOWS DO N                   | OT INCLU | DE BASEFL | OWS IF AN | <b>۱</b> ۲. |      |
|                                         |          |           |           |             | <br> |
|                                         |          |           |           |             |      |

------

| RESERVOIR (6188) | | IN= 2---> OUT= 1 |

| DT= 2.0 min                  | <br>                  | OUTFLOW<br>(cms)<br>.0000<br>.3511<br>.3604 | STORAGE<br>(ha.m.)<br>.0000<br>.0028<br>.0039 |             | OUTFLOW<br>(cms)<br>.3694<br>.3782<br>.0000 | STORAGE<br>(ha.m.)<br>.0094<br>.0175<br>.0000 |
|------------------------------|-----------------------|---------------------------------------------|-----------------------------------------------|-------------|---------------------------------------------|-----------------------------------------------|
| INFLOW : ID=<br>OUTFLOW: ID= | = 2 (617<br>= 1 (618  | AREA<br>(ha)<br>5) 1.64<br>8) 1.64          | A QPEA<br>(cms<br>1 .5                        | K<br>6<br>7 | TPEAK<br>(hrs)<br>6.00<br>6.03              | R.V.<br>(mm)<br>86.96<br>86.96                |
|                              | PEAK<br>TIME<br>MAXIM | FLOW REI<br>SHIFT OF PEA<br>UM STORAGE      | OUCTION [G<br>AK FLOW<br>USED                 | out?        | /Qin](%)=<br>(min)=<br>(ha.m.)=             | 66.24<br>2.00<br>.0132                        |

-----\_\_\_\_\_ | CALIB | STANDHYD (6166) | Area (ha)= .55 ID= 1 DT= 2.0 min | Total Imp(%)= 81.00 Dir. Conn.(%)= 81.00 ------IMPERVIOUS PERVIOUS (i) .45 .10 1.50 Surface Area (ha)= Dep. Storage (mm) = 1.00 Average Slope (\*) (m)= = (%)= 2.00 Length 40.00 Mannings n .013 .250 Max.Eff.Inten.(mm/hr) = 125.18 84.50 0

| over            | (min)   | 5.00      | 6.00      |            |
|-----------------|---------|-----------|-----------|------------|
| Storage Coeff.  | (min) = | 1.73 (ii) | 5.34 (ii) |            |
| Unit Hyd. Tpeak | (min) = | 4.00      | 6.00      |            |
| Unit Hyd. peak  | (cms) = | .43       | .20       |            |
|                 |         |           |           | *TOTALS*   |
| PEAK FLOW       | (cms) = | .15       | .02       | .176 (iii) |
|                 |         |           |           |            |

| TIME TO PEAK    | (hrs) = | 6.00  | 6.00  | 6.00  |
|-----------------|---------|-------|-------|-------|
| RUNOFF VOLUME   | (mm) =  | 88.01 | 50.71 | 80.92 |
| TOTAL RAINFALL  | (mm) =  | 89.01 | 89.01 | 89.01 |
| RUNOFF COEFFICI | ENT =   | . 99  | .57   | .91   |

\*\*\*\*\* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN\* = 80.0 Ia = Dep. Storage (Above)
  (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
  (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| RESERVOIR (6169)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| IN = 2 + OUT = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| .0522 .0007 1 .0576 .0145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| .0540 .0017 .0000 .0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| AREA QPEAK TPEAK R.V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| (ha) $(cms)$ $(hrs)$ $(mm)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| INFLOW : ID= 2 (6166) .55 .18 6.00 80.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |
| OUTFLOW: ID= 1 (6169) .55 .06 6.10 80.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| PEAK FLOW REDUCTION [Oout/Oin] (%) = 32.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
| TIME SHIFT OF PEAK FLOW $(min) = 6.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| MAXIMUM STORAGE USED (ba.m.) = 0091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| 1 + 2 = 3 AREA QPEAK TPEAK R.V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| (ha) (cms) (hrs) (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| IDI = 1 (6188): 1.64 .373 6.03 86.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| + ID2 = 2 (6169): .55 .056 6.10 80.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| 뽘슻슻놰욯튶쇧듸끹듵쐍쒼귿믢듞곷랖슻귿꾿븧륟놏빞뀨믗伍믙똜놰놰놰꿺묠큟챵귿늤긎콭릌샰늰놰놰깼꺻쌜르르                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| ID = 3 (6173): 2.19 .429 6.03 85.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| AREA QPEAK TPEAK R.V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| (ha) (Cms) (hrs) (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| 1D1 = 1 (61/4): 3.71 .808 6.03 81.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| + ID2 = 2 (6173): 2.19 .429 6.03 85.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| ID = 3 (6177): 5.90 1.237 6.03 83.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100-yr PEAK FLOW |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IU QEW CULVERT   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| T T Z Z Z J AREA QPEAK TPEAK R.V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| (ha) (cms) (hrs) (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| 1D1 = 1 (6158): 96.37 4.938 6.20 40.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| + ID2 = 2 (6177): 5.90 1.237 , 6.03 83.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| ID = 3 (6178): 102.27 6.042 6.03 43.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| CALIB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| STANDHYD (6151) Aros (bo) 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
| TD=1 DT= 2 0 min $T$ Total Tm(8)= 72.00 pt a contract to contract to a contract to a contract to a contract to |                  |
| $125 - 125 - 2.0$ min   10tal imp( $\mathfrak{s}$ ) = 72.00 Dir. Conn.( $\mathfrak{s}$ ) = 72.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| IMPERVIOUS PERVIOUS (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
| Surface Area $(ha) = 1.30$ .50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
| Dep. Storage (mm) = 1.00 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |

| Project:                      | Losani - Fifth              | Wheel                |                         |                        |                   |                              |                          |                       |                   |
|-------------------------------|-----------------------------|----------------------|-------------------------|------------------------|-------------------|------------------------------|--------------------------|-----------------------|-------------------|
| Project #:                    | PEB17500                    |                      |                         | -                      | Т                 |                              |                          |                       |                   |
| Designed By:                  | A. Crookes                  |                      |                         |                        |                   | SI IRNS                      | SIDE                     |                       |                   |
| Checked By:                   |                             |                      |                         |                        |                   |                              |                          |                       |                   |
| Date:                         | 4-Oct-2019                  |                      |                         |                        |                   |                              |                          |                       |                   |
| 100-year Watercourse Flow =   |                             | 6.040                | m <sup>3</sup> /s       |                        |                   |                              |                          |                       |                   |
| Monning's Equation for Open C | hannal Flowy                |                      |                         |                        |                   |                              |                          |                       |                   |
| Manning's Equation for Open C | mainer riow.                | O Elem Det           | $(m^3/a)$               |                        |                   |                              |                          |                       |                   |
|                               | where                       | Q = Flow Rate        | (m/s)                   |                        |                   |                              |                          |                       |                   |
| $AR^{2/3}S$                   | $S^{1/2}$                   | A = Flow Are         | a (m2)                  |                        |                   |                              |                          |                       |                   |
| Q = VA =n                     |                             | R = Hvdraulic        | Radius (m)              |                        |                   |                              |                          |                       |                   |
|                               |                             | S = Channel S        | Slope (m/m)             |                        |                   |                              |                          |                       |                   |
|                               |                             | n = Manning's        | s Roughness Coe         | efficient              |                   |                              |                          |                       |                   |
|                               |                             | 6                    | 8                       |                        |                   |                              |                          |                       |                   |
|                               |                             | Side Slope           | e Ratio (H:V) =         | 3                      | :1                |                              |                          |                       |                   |
|                               |                             | -                    | Manning's 'n' =         | 0.08                   | (dense, unm       | aintained vegetation)        |                          |                       |                   |
|                               |                             |                      |                         |                        |                   |                              |                          |                       |                   |
|                               | Channel Bottom<br>Width (m) | Channel Bed<br>Slope | Wetted<br>Perimeter (m) | Area (m <sup>2</sup> ) | Flow<br>Depth (m) | Minimum Channel<br>Depth (m) | Minimum Top<br>Width (m) | Q (m <sup>3</sup> /s) | Velocity<br>(m/s) |
|                               | 7.5                         | 1.0                  | 12.06                   | 6.97                   | 0.72              | 1.02                         | 13.63                    | 6.04                  | 0.87              |
|                               | 7.5                         | 1.5                  | 11.57                   | 6.07                   | 0.64              | 0.94                         | 13.16                    | 6.04                  | 1.00              |
|                               |                             |                      |                         |                        |                   |                              |                          |                       |                   |
|                               |                             |                      |                         |                        |                   |                              |                          |                       |                   |
|                               |                             |                      |                         |                        |                   |                              |                          |                       |                   |
|                               |                             |                      |                         |                        |                   |                              |                          |                       |                   |
|                               |                             |                      |                         |                        |                   |                              |                          |                       |                   |
|                               |                             |                      |                         |                        |                   |                              |                          |                       |                   |

| Reach | River Sta  | Profile | O Total         | Min Ch El | WS Flow | Crit W S | E G Elev | E.G. Slope | Vel Chnl | Flow Area | Top Width | Froude # Chl |
|-------|------------|---------|-----------------|-----------|---------|----------|----------|------------|----------|-----------|-----------|--------------|
| Reach | Triver Ota | TTOME   | (m3/e)          | (m)       | (m)     | (m)      | (m)      | (m/m)      | (m/s)    | (m2)      | (m)       | 110000 # Oni |
| 1     | 317        | DE 1    | 6.04            | 91.60     | (11)    | (11)     | 92.04    | 0.014561   | (11/3)   | 3 72      | 14.10     | 0.4          |
| 1     | 315        |         | Culvort         | 01.09     | 02.01   | 02.30    | 02.94    | 0.014301   | 1.02     | 5.12      | 14.15     | 0.4          |
| 1     | 222        | DE 1    | Culvert<br>6.04 | 01.10     | 92.44   | 92.17    | 92.62    | 0.022922   | 1 99     | 3 21      | 12.27     | 0.6          |
| 1     | 232        |         | 0.04            | 01.40     | 02.44   | 02.17    | 02.02    | 0.023623   | 1.00     | 5.21      | 13.27     | 0.0          |
| 1     | 222        |         | 0.04<br>Culvert | 01.45     | 02.40   | 01.92    | 02.40    | 0.007636   | 1.07     | 5.05      | 13.20     | 0.3          |
| 1     | 220        |         | Cuivert         | 04.05     | 01.00   | 04.70    | 00.04    | 0.024200   | 4.00     | 0.70      | 44.07     | 0.0          |
| 4     | 178        |         | 6.04            | 81.25     | 81.88   | 81.72    | 82.01    | 0.031200   | 1.62     | 3.73      | 11.27     | 0.6          |
| 1     | 174."      |         | 6.04            | 81.21     | 81.85   |          | 81.90    | 0.015142   | 1.00     | 6.05      | 11.35     | 0.4          |
| 1     | 170."      | PF I    | 6.04            | 81.17     | 81.78   |          | 81.84    | 0.018436   | 1.07     | 5.66      | 11.14     | 0.48         |
| 1     | 166        | PF 1    | 6.04            | 81.13     | 81.66   |          | 81.74    | 0.029435   | 1.25     | 4.83      | 10.69     | 0.5          |
| 1     | 161.*      | PF 1    | 6.04            | 80.98     | 81.52   |          | 81.59    | 0.029223   | 1.25     | 4.84      | 10.69     | 0.5          |
| 1     | 156.*      | PF 1    | 6.04            | 80.84     | 81.37   |          | 81.45    | 0.029386   | 1.25     | 4.83      | 10.69     | 0.59         |
| 1     | 151.*      | PF 1    | 6.04            | 80.69     | 81.22   |          | 81.30    | 0.029378   | 1.25     | 4.84      | 10.69     | 0.59         |
| 1     | 146.*      | PF 1    | 6.04            | 80.54     | 81.08   |          | 81.15    | 0.029239   | 1.25     | 4.84      | 10.69     | 0.59         |
| 1     | 141.*      | PF 1    | 6.04            | 80.40     | 80.93   |          | 81.01    | 0.029526   | 1.25     | 4.83      | 10.69     | 0.59         |
| 1     | 136        | PF 1    | 6.04            | 80.25     | 80.73   |          | 80.83    | 0.042301   | 1.41     | 4.28      | 10.37     | 0.70         |
| 1     | 131.*      | PF 1    | 6.04            | 80.03     | 80.59   |          | 80.66    | 0.024569   | 1.18     | 5.13      | 10.86     | 0.5          |
| 1     | 126.*      | PF 1    | 6.04            | 79.81     | 80.54   |          | 80.58    | 0.009690   | 0.86     | 7.04      | 11.86     | 0.36         |
| 1     | 121.*      | PF 1    | 6.04            | 79.60     | 80.52   |          | 80.54    | 0.004028   | 0.63     | 9.54      | 13.06     | 0.24         |
| 1     | 116        | PF 1    | 6.04            | 79.38     | 80.48   | 79.85    | 80.52    | 0.004866   | 0.93     | 6.51      | 14.08     | 0.28         |
| 1     | 114        |         | Culvert         |           |         |          |          |            |          |           |           |              |
| 1     | 101        | PF 1    | 6.04            | 79.28     | 79.81   | 79.75    | 80.00    | 0.054257   | 1.91     | 3.16      | 10.69     | 0.84         |
| 1     | 96.19*     | PF 1    | 6.04            | 79.16     | 79.73   |          | 79.80    | 0.023955   | 1.17     | 5.18      | 10.88     | 0.54         |
| 1     | 91.38*     | PF 1    | 6.04            | 79.05     | 79.61   |          | 79.68    | 0.024092   | 1.17     | 5.17      | 10.88     | 0.54         |
| 1     | 86.57*     | PF 1    | 6.04            | 78.93     | 79.50   |          | 79.57    | 0.024129   | 1.17     | 5.17      | 10.87     | 0.54         |
| 1     | 81.76*     | PF 1    | 6.04            | 78.82     | 79.38   |          | 79.45    | 0.024088   | 1.17     | 5.17      | 10.88     | 0.54         |
| 1     | 76.95*     | PF 1    | 6.04            | 78.70     | 79.26   |          | 79.33    | 0.023950   | 1.17     | 5.18      | 10.88     | 0.54         |
| 1     | 72.14*     | PF 1    | 6.04            | 78.59     | 79.15   |          | 79.22    | 0.024084   | 1.17     | 5.17      | 10.88     | 0.54         |
| 1     | 67.33*     | PF 1    | 6.04            | 78.47     | 79.03   |          | 79.10    | 0.024094   | 1.17     | 5.17      | 10.88     | 0.54         |
| 1     | 62.52*     | PF 1    | 6.04            | 78.35     | 78.92   |          | 78.99    | 0.023964   | 1.17     | 5.18      | 10.88     | 0.54         |
| 1     | 57.71*     | PF 1    | 6.04            | 78.24     | 78.80   |          | 78.87    | 0.024136   | 1.17     | 5.17      | 10.87     | 0.54         |
| 1     | 52.90*     | PF 1    | 6.04            | 78.12     | 78.69   |          | 78.76    | 0.024115   | 1.17     | 5.17      | 10.87     | 0.54         |
| 1     | 48.10*     | PF 1    | 6.04            | 78.01     | 78.57   |          | 78.64    | 0.024047   | 1.17     | 5.17      | 10.88     | 0.54         |
| 1     | 43.29*     | PF 1    | 6.04            | 77.89     | 78.45   |          | 78.52    | 0.023961   | 1.17     | 5.18      | 10.88     | 0.54         |
| 1     | 38.48*     | PF 1    | 6.04            | 77.78     | 78.34   |          | 78.41    | 0.024125   | 1.17     | 5.17      | 10.87     | 0.54         |
| 1     | 33.67*     | PF 1    | 6.04            | 77.66     | 78.22   |          | 78.29    | 0.024079   | 1.17     | 5.17      | 10.88     | 0.5          |
| 1     | 28.86*     | PF 1    | 6.04            | 77.54     | 78.11   |          | 78.18    | 0.023918   | 1.17     | 5.18      | 10.88     | 0.54         |
| 1     | 24.05*     | PF 1    | 6.04            | 77.43     | 77.99   |          | 78.06    | 0.023988   | 1.17     | 5.18      | 10.88     | 0.54         |
| 1     | 19.24*     | PF 1    | 6.04            | 77.31     | 77.88   |          | 77.95    | 0.023754   | 1.16     | 5.19      | 10.89     | 0.5          |
| 1     | 14.43*     | PF 1    | 6.04            | 77.20     | 77.77   |          | 77.83    | 0.023099   | 1.15     | 5.24      | 10.92     | 0.5          |
| 1     | 9.62*      | PF 1    | 6.04            | 77.08     | 77.66   |          | 77.73    | 0.021551   | 1.13     | 5.37      | 10.98     | 0.5          |
| 1     | 4.81*      | PF 1    | 6.04            | 76,97     | 77,57   |          | 77,63    | 0.018948   | 1.08     | 5.61      | 11.11     | 0.48         |
| 1     | 0          | PF 1    | 6.04            | 76.85     | 77 49   | 77 23    | 77 54    | 0.015004   | 1.00     | 6.07      | 11 36     | 0.4          |

![](_page_69_Figure_0.jpeg)