

2000 Argentia Road, Plaza One, Suite 203 Mississauga, Ontario, Canada L5N 1P7 t: 905.826.4044

### **Noise and Vibration Feasibility Study** 13 Mountain Street and 19 Elm Street **Grimsby, Ontario**

#### Prepared for:

Valentine Coleman 1 Inc. & Valentine Coleman 2 Inc. 180 Bloor Street West, Suite 701 Toronto, ON M5S 1T6

Prepared by

Andrew Rogers, BASc

and

Darryl McCumber, BASc, PEng

May 14, 2021







DEM DEM DEM TO BE THE TOTAL OF THE TOTAL OF

100164243 2021-05-14

POVINCE OF ONT

#### **Table of Contents**

| 1 | 1 INTRODUCTION AND SUMMARY                                                            | 1  |
|---|---------------------------------------------------------------------------------------|----|
| 2 | 2 SITE DESCRIPTION                                                                    | 2  |
| 3 | 3 TRAFFIC NOISE CRITERIA                                                              | 3  |
| 4 | 4 TRAFFIC NOISE ASSESSMENT                                                            | 4  |
|   | 4.1 Road Traffic Data                                                                 | 4  |
|   | 4.2 Rail Traffic Data                                                                 | 5  |
|   | 4.3 Prediction Results                                                                | 5  |
|   | 4.4 Recommendations                                                                   | 6  |
|   | 4.4.1 Outdoor Living Areas                                                            | 6  |
|   | 4.4.2 Ventilation Requirements                                                        | 7  |
|   | 4.4.3 Minimum Building Façade Constructions                                           | 7  |
| 5 |                                                                                       |    |
| 6 |                                                                                       |    |
| 7 | 7 RECOMMENDED WARNING CLAUSES                                                         | 8  |
| 8 |                                                                                       |    |
| 9 | O CONCLUSION                                                                          | 9  |
| 1 | 10 REFERENCES                                                                         | 10 |
|   |                                                                                       |    |
| T | Table 1: MECP Road/Rail Traffic Noise Criteria (dBA)                                  | 3  |
| T | Table 2: 2041 Projected Road Traffic Data                                             | 5  |
|   | Table 3: 2031 Projected Rail Traffic Data                                             |    |
| T | Table 4: Road / Rail / Total Traffic Sound Level Prediction at Building Façades [dBA] | 6  |
|   |                                                                                       |    |
|   | Figure 1: Key Plan                                                                    |    |
|   | Figure 2: Site Plan                                                                   |    |
|   | Figure 3: Daytime Sound Level Predictions at Building Façades from Road Traffic       |    |
|   | Figure 4: Nighttime Sound Level Predictions at Building Façades from Road Traffic     |    |
| F | Figure 5: Outdoor Amenity Area Prediction Location                                    | 15 |
|   |                                                                                       |    |

Appendix A: Road & Rail Traffic Data





#### **VERSION CONTROL**

| Ver. | Date       | Version Description / Changelog                  | Prepared By |
|------|------------|--------------------------------------------------|-------------|
| 0    | 2021-05-14 | Noise and Vibration Feasibility Study to support | A. Rogers   |
|      |            | official plan amendment and rezoning.            | D. McCumber |

#### Limitations

This report was prepared by HGC Engineering solely for the client to whom it is addressed and is to be used exclusively for the purposes set out in the report. Any conclusions and/or recommendations herein reflect the judgment of HGC Engineering based on information available at the time of preparation, and has relied in good faith on information provided by others, as noted in the report, which has been assumed to be factual and accurate. Changed conditions or information occurring or becoming known after the date of this report could affect the results and conclusions presented.

Any use, reliance or decisions made based on this report by any third party are the responsibilities of such third parties. HGC Engineering accepts no responsibility for damages, if any, suffered by any third party that may arise through the use, reliance or decisions made based on this report. If a third party requires reliance on this report, written authorization from HGC Engineering must be sought and granted. HGC Engineering disclaims responsibility of consequential financial effects on transactions or property values, or requirements for follow-up actions and costs.





#### 1 INTRODUCTION AND SUMMARY

Howe Gastmeier Chapnik Limited (HGC Engineering) was retained by Valentine Coleman 1 Inc. and Valentine Coleman 2 Inc. to provide a Noise and Vibration Feasibility Study for the proposed mixed-use development at 13 Mountain Street and 19 Elm Street, in the Town of Grimsby ("the site"). This assessment is based on the conceptual drawings "ZBA Issue", dated May 7, 2021, prepared by SvN Architects + Planners.

The site is located on the northeast corner of the intersection of Mountain Street and Elm Street. Figure 1 shows a key plan of the site. The development plan provides for the construction of a mixed-use 7-storey building connecting to two existing buildings, Woolverton House and Woolverton Hall. The site plan is shown in Figure 2.

Road traffic on Mountain Street is the primary source of noise with potential impact on the proposed development. Road traffic on Elm Street and Main Street are secondary noise sources, as well as road traffic on the QEW and rail traffic on the CN rail line north of the site.

Traffic volumes for the surrounding roadways were obtained from the Niagara Region Transportation Services Division and the Ministry of Transportation (MTO). Traffic volumes for the rail line were obtained from CN. The transportation traffic data was used to predict future sound levels (L<sub>EQ</sub>) at the proposed building façades and outdoor amenity areas. The predicted sound levels were compared to the guidelines of the Ministry of the Environment, Conservation and Parks (MECP) to develop associated traffic noise control recommendations for the proposed development.

The surrounding area includes low-rise commercial, retail, residential buildings. These neighbouring uses may generate some audible noise at times, but no specific sources of potential concern have been identified, and there were no related audible noises noted during the site visit. No quantitative assessment of noise from any surrounding properties has been conducted in the context of this feasibility study.

There were no sources of vibration identified in the environment around this development site, and therefore potential vibration impacts are not of concern and are not mentioned further in this report.

The future mixed-use development will include non-residential uses, and consideration will need to be given during detailed design of the future non-residential spaces to ensure that those uses do not adversely impact the adjacent residential uses.







Warning clauses for noise are required to be included in the development agreements and/or lease provisions, and recommended wording for those clauses is provided herein.

#### 2 SITE DESCRIPTION

The subject property is located in Grimsby, on the northeast corner of the intersection of Elm Street and Mountain Street. According to the architectural drawings dated May 7, 2021 ("ZBA Issue"), the development will be comprised of a 7-storey residential building, above 2.5 levels of underground parking. The ground floor is shown to include residential suites, mechanical and electrical spaces, utility areas, and amenity space (indoor and outdoor). The remaining floors are shown to include residential suites, with the exception of the mechanical penthouse on the roof. Two existing buildings, Woolverton House and Woolverton Hall (both two storeys) will be connected to the development; Woolverton Hall will continue to be used as a community hall and Woolverton House will be used as commercial space.

The site is bound by Mountain Street to the west and Elm Street to the south. Main Street is located approximately 90 metres to the northeast. The Queen Elizabeth Way highway (QEW) is located approximately 615 metres to the north. There is a rail corridor, carrying both CN and VIA trains, located approximately 410 metres to the north. At this distance, noise and vibration from the rail line does not strictly need to be considered; however, the rail line has been included as part of the noise model, for completeness.

A site visit was conducted in March of 2021, to make observations of the acoustical environment. The primary source of transportation sound emissions in the area was confirmed to be road traffic on Mountain Street, with contributions from road traffic on Elm Street. During the site visit, no other noise sources of particular concern were noted in the environment immediately surrounding the site.

The site is near the downtown area of Grimsby, surrounded by low-rise commercial, retail, and residential buildings. To the south are low-rise residential buildings. To the west is a mix of low-rise residential and commercial buildings. To the north and east are low-rise commercial buildings with downtown Grimsby beyond. In terms of the classifications provided for in Ministry of the Environment (MECP) guidelines, this area is considered to be a Class 1 "urban" acoustical environment.







#### 3 TRAFFIC NOISE CRITERIA

Guidelines for acceptable levels of road and rail traffic noise impacting residential developments are contained in the MECP publication NPC-300, "Environmental Noise Guideline, Stationary and Transportation Sources – Approval and Planning" [1], August, 2013 (release date October 21, 2013), and are listed in Table 1 below. The values in Table 1 are energy equivalent (average) sound levels [LEQ] in units of A-weighted deciBels [dBA].

Table 1: MECP Road/Rail Traffic Noise Criteria (dBA)

| Area                       | Day (dBA)<br>(7:00 – 23:00) | Night (dBA)<br>(23:00 – 7:00) |
|----------------------------|-----------------------------|-------------------------------|
| Outdoor Living Area        | 55 dBA*                     |                               |
| Inside Living/Dining Rooms | 45/40                       | 45/40                         |
| Inside Bedrooms            | 45/40                       | 40/35                         |

<sup>\*</sup>Up to 60 dBA with a warning clause

These criteria apply to the surrounding vehicular traffic. Daytime refers to the period between 07:00 and 23:00, while night-time refers to the period between 23:00 and 07:00. Corridors and washrooms are usually not considered to be noise-sensitive areas.

The term "Outdoor Living Area" (OLA) is used in reference to an outdoor patio, a backyard, a terrace, a garden, or common areas associated with high-rise multi-unit buildings where passive outdoor recreation is expected to occur. Balconies and elevated terraces (e.g., rooftops) with a depth of less than 4 meters are not considered OLAs under MECP guidelines, and accordingly the noise criteria are not applicable there. Larger private terraces require consideration only if they are the only OLA for the occupant; in general, common outdoor amenity terraces associated with high-rise buildings are the only OLAs that require consideration.

In cases where a minor excess (up to 5 dB) over the sound level limit in an OLA is anticipated, MECP guidelines allow the excess to be addressed by including a warning clause in the titles, deeds or tenancy agreements for the affected dwellings. Where OLA sound levels exceed 60 dBA, physical noise control measures, such as an acoustical barrier, are required.

Where the traffic noise level (L<sub>EQ</sub>) is greater than 60 dBA at night or 65 dBA during the day, windows must be designed to achieve the indoor sound level criteria listed above. Otherwise, any glazing meeting the Ontario Building Code is considered adequate under MECP guidelines. Where







the predicted nighttime and/or daytime sound levels exceed these thresholds, central air conditioning is required so that windows can remain closed against the noise.

The indoor sound level limits for rail sources are 5 dB more stringent than for road sources, to account for the additional low-frequency (rumble) components of locomotives, hence the façade insulation requirements are calculated separately and then combined.

Warning clauses to notify future residents of possible excesses are required when nighttime road traffic sound levels exceed 50 dBA at the plane of the windows or when daytime sound levels exceed 55 dBA in the outdoor living areas or at the plane of the windows.

#### TRAFFIC NOISE ASSESSMENT 4

#### 4.1 **Road Traffic Data**

Traffic data summaries for the key roads surrounding the site were obtained from the Niagara Region Transportation Services Division (see Appendix A). These data were provided in the form of 8-hour intersection turning counts; in order to obtain 24-hour traffic volumes required to predict future sound levels during both the 16-hour daytime and 8-hour night-time periods, the following assumptions were made:

- The 24-hour traffic volumes were assumed to be double the obtained 8-hour daily peak volumes;
- The prediction considered traffic that will exist in 20 years (2041), assuming traffic annual growth of 2.5% on all roadways, as required by the Niagara Region for regional roads;
- Half of all trucks were assumed to be heavy, the other half medium, and buses were counted as medium trucks;
- Daytime (7:00-23:00) vs night-time (23:00-7:00) traffic volumes were determined based on an assumed 90% day / 10% night split.

Traffic data for the QEW was obtained from the MTO in the form of Annual Average Daily Traffic (AADT) for the year 2016 and is also included in Appendix A. The following assumptions were made:

- The prediction considered traffic that will exist in 10 years (2031), assuming traffic annual growth of 2.5%, per MECP guidelines;
- A commercial vehicle percentage of 9% was provided; half were assumed to be heavy trucks, and the other half were assumed to be medium;







50

100

1.2

4.5

 Daytime (7:00 – 23:00) vs night-time (23:00 – 7:00) traffic volumes were determined based on an assumed 85% day / 15% night split.

The resulting future road traffic volumes for the roads used in this assessment are listed in Table 2, in addition to commercial vehicle (truck) percentages and the posted speed limit for each roadway.

Commercial Vehicle Day / **Posted Percentages** Night Speed **Road Name AADT Split** Medium Heavy Limit (% / %)(km/h)Truck % Truck % Mountain Street (south of Main) 14,138 90 / 10 3.9 3.9 50 Elm Street (south of Main) 14,331 90 / 10 0.7 0.7 50

90 / 10

85 / 15

1.2

4.5

22,678

116,057

**Table 2: 2041 Projected Road Traffic Data** 

OEW\*

Main Street (east of Mountain)

#### 4.2 Rail Traffic Data

Rail traffic data was obtained from CN and VIA Rail, and is contained in Appendix A. This data was escalated to the year 2031 at an annual rate of 2.5%, as per MECP guidelines. The rail volumes used in the analysis are summarized in Table 3.

No. of No. of No. of Trains No. of Trains Max **Type of Train** engines cars **Daytime** Night-time **Speed** (07:00-23:00)(23:00-07:00)(max) (max) (mph) Freight (CN) 140 4 5.1 0 60 Passenger (VIA) 10 2.6 0 65

Table 3: 2031 Projected Rail Traffic Data

#### 4.3 Prediction Results

The sound propagation portion of the modelling has been completed using methods from ISO Standard 9613-2, "Acoustics - Attenuation of Sound During Propagation Outdoors" [2], which accounts for reduction in sound level with distance due to geometrical spreading, air absorption, ground attenuation and acoustical shielding by intervening structures. *CadnaA*, *version 2020 MR1*, software package was used for this purpose, as it is well equipped to process calculations in complex, three-dimensional environments. ISO 9613-2 is a widely recognized standard for predicting sound propagation in the environment, and is accepted by many Ontario municipalities, and the MECP.





<sup>\*</sup>Traffic data projected to 2031.

The surrounding buildings were incorporated into the model. The road and rail noise sources have been included in the model as line sources, calibrated to be equal at a reference distance of 15 m to levels predicted in STAMSON 5.04, a computer algorithm developed by the MECP, based on the average daily traffic volumes presented in Table 2.

The model was used to predict traffic noise levels at each of the building façades. Predicted daytime and night-time sound levels at the building façades are shown in Figure 3 and Figure 4, respectively. Maximum sound level contributions at each façade for representative receptor locations in the building are shown in the table below. As expected, noise from the rail line is minimal in comparison with noise from the surrounding roadways.

Table 4: Road / Rail / Total Traffic Sound Level Prediction at Building Façades [dBA]

| Time of Day            | North    | East     | South    | West     |
|------------------------|----------|----------|----------|----------|
| Day (16-hour average)  | 64/51/64 | 60/49/60 | 64/36/64 | 65/49/65 |
| Night (8-hour average) | 58//58   | 55//55   | 58//58   | 59//59   |

An outdoor amenity area is shown on the ground floor, on the east side of the building. The receptor location for the outdoor amenity space is represented by prediction location R1, as shown in Figure 5. The predicted sound level ( $L_{Aeq,16hr}$ ) at this location is 51 dBA.

#### 4.4 Recommendations

The maximum predicted sound levels at the building façade were found to be up to 65 dBA during daytime hours, and up to 59 dBA during nighttime hours.

The following sections outline preliminary recommendations for building façade constructions and ventilation requirements to achieve the noise criteria discussed in Section 3.

#### 4.4.1 Outdoor Living Areas

Since there is a common outdoor amenity space on the ground floor provided for the use of all residents, private terraces and balconies in the development do not require assessment. The common outdoor amenity area is subject to the MECP criteria outlined in Table 1. The outdoor amenity space is represented by prediction location R1 on Figure 5.

The predicted future average daytime sound level is less than 55 dBA at the receptor location. No additional noise abatement is required for this amenity space to comply with the MECP criteria outlined in Section 3.







#### 4.4.2 Ventilation Requirements

At the residential façades, the predicted sound levels are less than the thresholds stated in Section 3, and thus central air conditioning systems are not strictly required; however, such systems are expected to be included in any case.

#### 4.4.3 Minimum Building Façade Constructions

Given the projected future sound levels at the building façades, any glazing meeting the Ontario Building Code is considered adequate under MECP guidelines; however, in an urban environment such as this, we do not typically recommend glazing acoustical performance below STC-33. This can generally be achieved with typical glazing constructions used in high-rise buildings (i.e., two 5-6 mm thick panes separated by a 13 mm air space). Operable doors and windows can be up to three points lower; the performance of operable elements is typically determined by the seals.

It is assumed that exterior wall assemblies have sufficient sound insulation such that sound transmitted through them is negligible in comparison to the glazing. Precast or masonry exterior walls will meet these requirements, as will spandrel or metal panels that are backed by an independent drywall assembly.

#### 5 IMPACT OF THE DEVELOPMENT ON THE ENVIRONMENT

Sound levels from stationary (non-traffic) sources of noise such as rooftop air-conditioners, cooling towers, exhaust fans, etc. should not exceed the minimum one-hour  $L_{EQ}$  ambient (background) sound level from road traffic, at any potentially impacted residential point of reception, to comply with provincial noise guidelines (i.e., NPC-300) and to avoid complaints. The typical minimum ambient sound levels in the area are expected to be in the range of 45 dBA during the night and 50 dBA during the day (depending on exposure to the roadways), at nearby residential receptors. Thus, any electro-mechanical equipment associated with this development should be designed such that they do not result in noise impact beyond these ranges. The proposed building will be higher than the current neighbouring buildings, thus noise from the mechanical penthouse on the roof of this building is not expected to substantially impact the neighbouring buildings, provided that reasonable typical control measures are included.







#### 6 IMPACT OF THE DEVELOPMENT ON ITSELF

Section 5.9.1 of the Ontario Building Code (OBC) specifies the minimum required sound insulation characteristics for demising partitions, in terms of STC or ASTC values. In order to maintain adequate acoustical privacy between separate suites in a multi-tenant building, inter-suite walls should meet or exceed STC-50 or ASTC-47. Walls separating a suite from a noisy space such as a refuse chute, or elevator shaft, should meet or exceed STC-55. In addition, it is recommended that the floor/ceiling constructions separating suites from any amenity or commercial spaces also meet or exceed STC-55. Tables 1 and 2 in Section SB-3 of the Supplementary Guideline to the OBC provide a comprehensive list of constructions that will meet the above requirements.

Noise levels from the development's own mechanical and electrical systems will need to be reasonably limited to prevent impacts on suites within the building. These systems should be reviewed at the detail design stage to help prevent the occurrence of any excessive impacts.

There is a loading bay on the ground floor at the north portion of the site, open to suites above. It is anticipated that the loading bay will be used for residential garbage pickup and occasional commercial/retail deliveries, and is therefore not expected to be a significant noise concern.

#### 7 RECOMMENDED WARNING CLAUSES

MECP guidelines recommend that appropriate warning clauses be used in the Development Agreements and in purchase, sale, and lease agreements (typically by reference to the Development Agreements), to inform future owners and occupants about potential noise concerns from sources in the area. The actual wording of the warning clause depends on the nature of the excess. For residential uses, the recommended clauses are as follows:

- (a) Purchasers/tenants are advised that despite the inclusion of noise control features in the development and within the building units, sound levels due to increasing road traffic may on occasion interfere with some activities of the dwelling occupants as the sound levels exceed the sound level limits of the Ministry of Environment, Conservation and Parks.
- (b) This dwelling unit has been supplied with a heating and cooling system which will allow windows and exterior doors to remain closed, thereby ensuring that the indoor sound levels are within the sound level limits of the Ministry of the Environment, Conservation and Parks.







(c) Purchasers/tenants are advised that due to the proximity of this development to nearby retail/commercial facilities, sound levels from the facilities may at times be audible.

These sample clauses are provided only as examples, and can be modified by the owner's legal representative, in consultation with the Town, in order to suit site-specific requirements.

#### 8 SUMMARY OF RECOMMENDATIONS

The following list summarizes the recommendations made in this report. The reader is referred to the previous sections of the report where these recommendations are discussed in more detail.

- 1. Central air conditioning is not required, but is assumed to be provided in any event.
- 2. Recommended minimum glazing constructions to ensure adequate indoor sound levels from road traffic and other transient noises are outlined in Section 4.4.3.
- 3. Noise warning clauses should be included in the property and tenancy agreements and offers of purchase and sale for the residential suites to inform future residents of road traffic noise and potential noise from nearby commercial/retail facilities. Recommended wording for these clauses is provided in Section 7. Such clauses are often included by reference to the Development Agreements in which they are contained.
- 4. Demising assemblies must be selected to meet the minimum requirements of the Ontario Building Code (OBC). Where B19R certification is needed, an acoustical consultant is required to review details of demising constrictions and mechanical/electrical equipment, when available, to help ensure that the noise impact of the development on itself are maintained within acceptable levels. Outdoor sound emissions should also be checked to ensure that any potential impacts on adjacent properties are suitably minimized.

#### 9 CONCLUSION

The results of this study indicate that the proposed development is feasible on this site from a noise impact perspective, with the inclusion of standard acoustical features. Preliminary design recommendations are provided herein, and can be developed in greater detail as the design proceeds through tender and construction.







#### 10 REFERENCES

- 1. Ontario Ministry of the Environment, Conservation and Parks Publication NPC-300, Environmental Noise Guideline, Stationary and Transportation Sources - Approval and Planning, August, 2013.
- 2. International Organization for Standardization, *Acoustics Attenuation of Sound during Propagation Outdoors Part 2: General Method of Calculation*, ISO-9613-2, Switzerland, 1996.
- 3. Niagara Region Public Works Department Policy Manual, *Regional Road Traffic Noise Control*, November 9, 2006





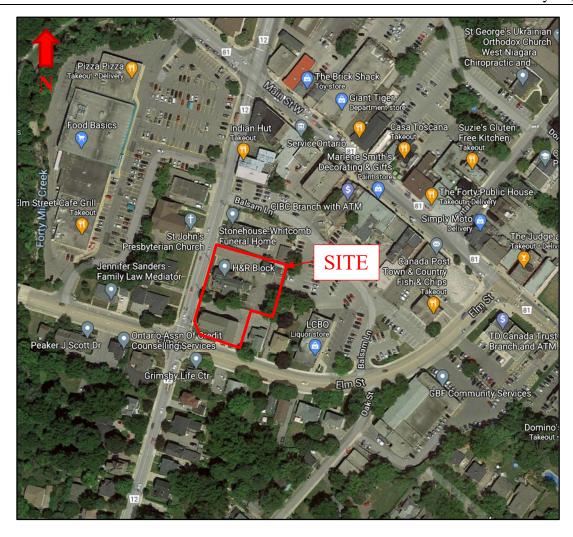



Figure 1: Key Plan





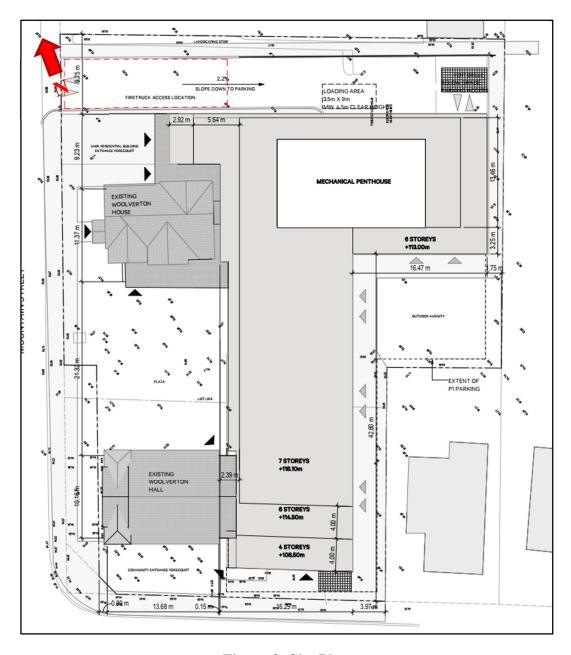



Figure 2: Site Plan







Figure 3: Daytime Sound Level Predictions at Building Façades from Road Traffic







Figure 4: Nighttime Sound Level Predictions at Building Façades from Road Traffic







Figure 5: Outdoor Amenity Area Prediction Location





# APPENDIX A Road & Rail Traffic Data








#### **Turning Movements Report - AM Period**

Location...... Christie Street/Mountain Street @ Main Street GeolD...... 01115

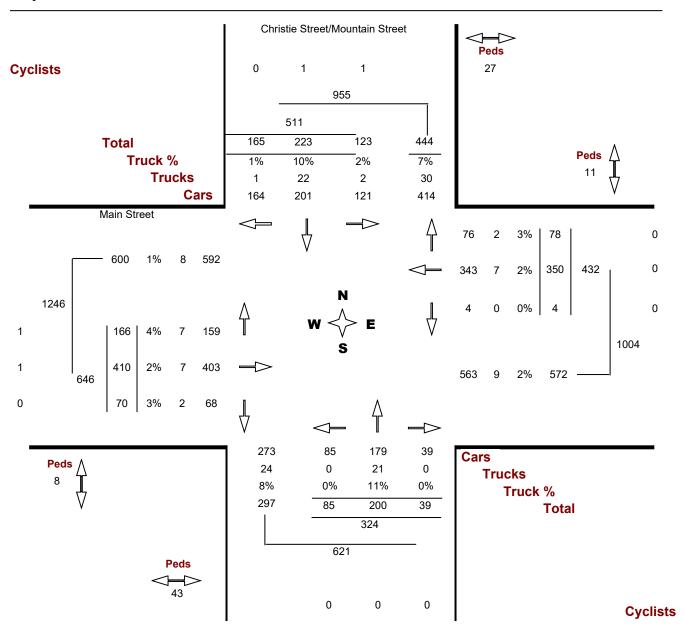
Municipality. GRIMSBY Count Date. Tuesday, 09 April, 2019

Traffic Cont. Count Time. 07:00 AM — 09:00 AM

Major Dir.... East west Peak Hour. 08:00 AM — 09:00 AM






#### **Turning Movements Report - PM Period**

Location...... Christie Street/Mountain Street @ Main Street GeolD...... 01115

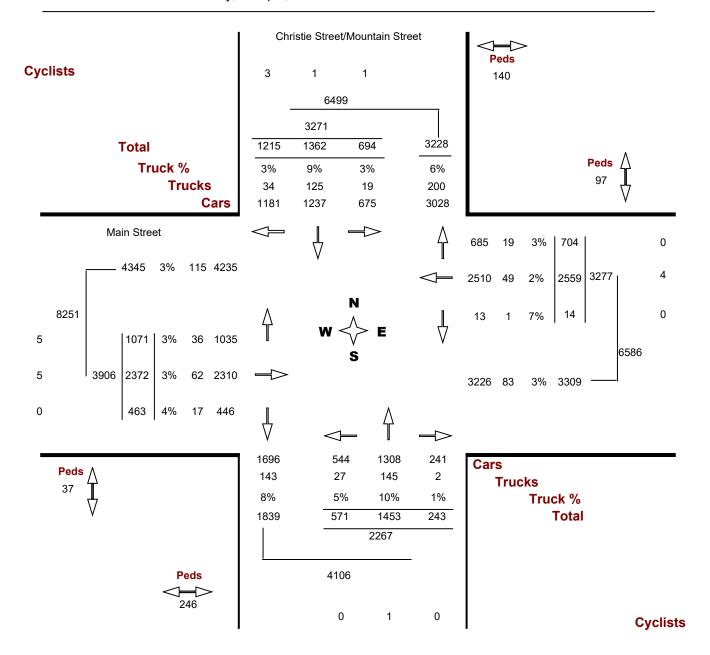
Municipality. GRIMSBY Count Date. Tuesday, 09 April, 2019

Traffic Cont. Count Time. 03:00 PM — 06:00 PM

Major Dir.... East west Peak Hour. 03:15 PM — 04:15 PM






# Turning Movement Count Report Full Study

Location...... Christie Street/Mountain Street @ Main Street

Municipality...... GRIMSBY

**GeoID......** 01115

Count Date...... Tuesday, 09 April, 2019





## Turning Movement Count - Details Report (15 min)

Location...... Christie Street/Mountain Street @ Main Street

Municipality..... GRIMSBY

Count Date...... Tuesday, April 09, 2019

#### Christie Street/Mountain Street

Main Street

|               |     |      | North A | pproac  | h   | 0001110 | - Ciricanii | South | Approa  | ach |    |     | Fact Ar | proach  |     | . 000 | ·<br>\Mes | t Appro | ach     |     |
|---------------|-----|------|---------|---------|-----|---------|-------------|-------|---------|-----|----|-----|---------|---------|-----|-------|-----------|---------|---------|-----|
| Time Period   | LT  | TH ' | RT      | U-Turn  | ТОТ | LT      | TH          | RT    | U-Turn  | TOT | LT | TH  | RT      | U-Turn  | TOT | LT    | TH        | RT      | U-Turn  | TOT |
| 07:00 07:15   | 5   | 23   | 18      | 0-14111 | 46  | 16      | 52          | 2     | 0-14111 | 70  | 0  | 37  | 38      | 0-14111 | 75  | 12    | 19        | 6       | 0-14111 | 37  |
| 07:15 07:30   | 7   | 28   | 23      | 0       | 58  | 12      | 53          | 0     | 0       | 65  | 0  | 28  | 29      | 0       | 57  | 25    | 32        | 8       | 0       | 65  |
| 07:30 07:45   | 9   | 19   | 23      | 0       | 51  | 17      | 51          | 4     | 0       | 72  | 0  | 62  | 32      | 0       | 94  | 23    | 33        | 10      | 0       | 66  |
| 07:45 08:00   | 14  | 36   | 41      | 0       | 91  | 32      | 46          | 1     | 0       | 79  | 0  | 85  | 31      | 0       | 116 | 34    | 65        | 17      | 0       | 116 |
| Hourly Total  | 35  | 106  | 105     | 0       | 246 | 77      | 202         | 7     | 0       | 286 | 0  | 212 | 130     | 0       | 342 | 94    | 149       | 41      | 0       | 284 |
| 08:00 08:15   | 12  | 31   | 43      | 0       | 86  | 13      | 55          | 5     | 0       | 73  | 0  | 66  | 27      | 0       | 93  | 35    | 60        | 7       | 0       | 102 |
| 08:15 08:30   | 8   | 29   | 46      | 0       | 83  | 19      | 56          | 5     | 0       | 80  | 0  | 78  | 22      | 0       | 100 | 29    | 60        | 4       | 0       | 93  |
| 08:30 08:45   | 16  | 34   | 49      | 0       | 99  | 25      | 53          | 3     | 0       | 81  | 0  | 70  | 17      | 0       | 87  | 33    | 50        | 13      | 0       | 96  |
| 08:45 09:00   | 19  | 43   | 75      | 0       | 137 | 23      | 53          | 6     | 0       | 82  | 0  | 104 | 16      | 0       | 120 | 50    | 81        | 9       | 0       | 140 |
| Hourly Total  | 55  | 137  | 213     | 0       | 405 | 80      | 217         | 19    | 0       | 316 | 0  | 318 | 82      | 0       | 400 | 147   | 251       | 33      | 0       | 431 |
| 11:00 11:15   | 18  | 46   | 33      | 0       | 97  | 27      | 46          | 5     | 0       | 78  | 0  | 69  | 21      | 0       | 90  | 28    | 70        | 8       | 0       | 106 |
| 11:15 11:30   | 21  | 34   | 33      | 0       | 88  | 16      | 33          | 9     | 0       | 58  | 0  | 89  | 17      | 0       | 106 | 32    | 69        | 16      | 0       | 117 |
| 11:30 11:45   | 23  | 32   | 33      | 0       | 88  | 11      | 39          | 7     | 0       | 57  | 2  | 63  | 21      | 0       | 86  | 30    | 68        | 12      | 0       | 110 |
| 11:45 12:00   | 19  | 28   | 41      | 0       | 88  | 25      | 39          | 6     | 0       | 70  | 0  | 96  | 21      | 0       | 117 | 31    | 72        | 12      | 0       | 115 |
| Hourly Total  | 81  | 140  | 140     | 0       | 361 | 79      | 157         | 27    | 0       | 263 | 2  | 317 | 80      | 0       | 399 | 121   | 279       | 48      | 0       | 448 |
| 12:00 12:15   | 25  | 34   | 47      | 0       | 106 | 17      | 41          | 11    | 0       | 69  | 1  | 80  | 19      | 0       | 100 | 31    | 91        | 12      | 0       | 134 |
| 12:15 12:30   | 30  | 38   | 31      | 0       | 99  | 18      | 44          | 13    | 0       | 75  | 1  | 92  | 24      | 0       | 117 | 38    | 70        | 16      | 0       | 124 |
| 12:30 12:45   | 23  | 33   | 35      | 0       | 91  | 12      | 39          | 8     | 0       | 59  | 0  | 82  | 21      | 0       | 103 | 24    | 91        | 17      | 0       | 132 |
| 12:45 13:00   | 26  | 34   | 39      | 0       | 99  | 15      | 37          | 8     | 0       | 60  | 0  | 82  | 33      | 0       | 115 | 26    | 67        | 12      | 0       | 105 |
| Hourly Total  | 104 | 139  | 152     | 0       | 395 | 62      | 161         | 40    | 0       | 263 | 2  | 336 | 97      | 0       | 435 | 119   | 319       | 57      | 0       | 495 |
| 13:00 13:15   | 21  | 33   | 42      | 0       | 96  | 23      | 30          | 12    | 0       | 65  | 0  | 95  | 24      | 0       | 119 | 23    | 62        | 14      | 0       | 99  |
| 13:15   13:30 | 24  | 37   | 35      | 0       | 96  | 20      | 44          | 9     | 0       | 73  | 0  | 83  | 17      | 0       | 100 | 36    | 67        | 17      | 0       | 120 |
| 13:30 13:45   | 27  | 36   | 29      | 0       | 92  | 17      | 33          | 10    | 0       | 60  | 2  | 83  | 19      | 0       | 104 | 23    | 73        | 23      | 0       | 119 |
| 13:45 14:00   | 23  | 42   | 41      | 0       | 106 | 23      | 46          | 9     | 0       | 78  | 1  | 90  | 23      | 0       | 114 | 25    | 74        | 16      | 0       | 115 |
| Hourly Total  | 95  | 148  | 147     | 0       | 390 | 83      | 153         | 40    | 0       | 276 | 3  | 351 | 83      | 0       | 437 | 107   | 276       | 70      | 0       | 453 |
| 15:00 15:15   | 25  | 56   | 42      | 0       | 123 | 19      | 48          | 10    | 0       | 77  | 0  | 91  | 16      | 0       | 107 | 39    | 77        | 19      | 0       | 135 |
| 15:15 15:30   | 34  | 57   | 45      | 0       | 136 | 19      | 35          | 8     | 0       | 62  | 0  | 97  | 11      | 0       | 108 | 42    | 117       | 17      | 0       | 176 |
| 15:30 15:45   | 25  | 51   | 34      | 0       | 110 | 24      | 35          | 13    | 0       | 72  | 1  | 85  | 28      | 0       | 114 | 48    | 106       | 22      | 0       | 176 |
| 15:45 16:00   | 25  | 57   | 41      | 0       | 123 | 25      | 50          | 9     | 0       | 84  | 1  | 78  | 14      | 0       | 93  | 37    | 96        | 12      | 0       | 145 |
| Hourly Total  | 109 | 221  | 162     | 0       | 492 | 87      | 168         | 40    | 0       | 295 | 2  | 351 | 69      | 0       | 422 | 166   | 396       | 70      | 0       | 632 |
| 16:00 16:15   | 39  | 58   | 45      | 0       | 142 | 17      | 80          | 9     | 0       | 106 | 2  | 90  | 25      | 0       | 117 | 39    | 91        | 19      | 0       | 149 |

#### Christie Street/Mountain Street

#### Main Street

|              |     | 1    | North A | pproacl | า    |     |      | South | Approa | ach  |    | - 1  | East Ap | proach |      |      | Wes  | t Appro | ach    |      |
|--------------|-----|------|---------|---------|------|-----|------|-------|--------|------|----|------|---------|--------|------|------|------|---------|--------|------|
| Time Period  | LT  | TH   | RT      | U-Turn  | TOT  | LT  | TH   | RT    | U-Turn | TOT  | LT | TH   | RT      | U-Turn | TOT  | LT   | TH   | RT      | U-Turn | TOT  |
| 16:15 16:30  | 20  | 57   | 43      | 0       | 120  | 9   | 48   | 8     | 0      | 65   | 1  | 94   | 21      | 0      | 116  | 35   | 89   | 22      | 0      | 146  |
| 16:30 16:45  | 28  | 65   | 35      | 0       | 128  | 20  | 46   | 9     | 0      | 75   | 0  | 89   | 22      | 0      | 111  | 38   | 121  | 20      | 0      | 179  |
| 16:45 17:00  | 24  | 53   | 34      | 0       | 111  | 11  | 48   | 7     | 0      | 66   | 1  | 92   | 16      | 0      | 109  | 45   | 88   | 20      | 0      | 153  |
| Hourly Total | 111 | 233  | 157     | 0       | 501  | 57  | 222  | 33    | 0      | 312  | 4  | 365  | 84      | 0      | 453  | 157  | 389  | 81      | 0      | 627  |
| 17:00 17:15  | 26  | 71   | 36      | 0       | 133  | 14  | 41   | 11    | 0      | 66   | 0  | 90   | 23      | 0      | 113  | 45   | 90   | 18      | 0      | 153  |
| 17:15 17:30  | 25  | 66   | 40      | 0       | 131  | 14  | 39   | 9     | 0      | 62   | 0  | 78   | 22      | 0      | 100  | 38   | 75   | 18      | 0      | 131  |
| 17:30 17:45  | 29  | 55   | 34      | 0       | 118  | 8   | 49   | 13    | 0      | 70   | 1  | 64   | 17      | 0      | 82   | 41   | 76   | 13      | 0      | 130  |
| 17:45 18:00  | 24  | 46   | 29      | 0       | 99   | 10  | 44   | 4     | 0      | 58   | 0  | 77   | 17      | 0      | 94   | 36   | 72   | 14      | 0      | 122  |
| Hourly Total | 104 | 238  | 139     | 0       | 481  | 46  | 173  | 37    | 0      | 256  | 1  | 309  | 79      | 0      | 389  | 160  | 313  | 63      | 0      | 536  |
| Grand Total  | 694 | 1362 | 1215    | 0       | 3271 | 571 | 1453 | 243   | 0      | 2267 | 14 | 2559 | 704     | 0      | 3277 | 1071 | 2372 | 463     | 0      | 3906 |
| Truck %      | 3%  | 9%   | 3%      | 0%      | 5%   | 5%  | 10%  | 1%    | 0%     | 8%   | 7% | 2%   | 3%      | 0%     | 2%   | 3%   | 3%   | 4%      | 0%     | 3%   |

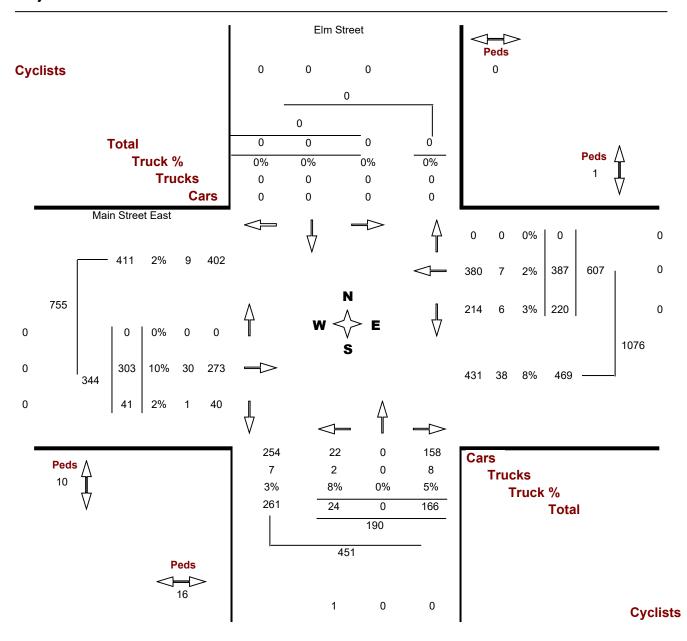


#### **Turning Movements Report - AM Period**

Location...... Elm Street @ Main Street East

Municipality. GRIMSBY

**Traffic Cont.** 


Major Dir.... East west

**GeoID......** 01110

Count Date. Thursday, 11 April, 2019

**Count Time.** 07:00 AM — 09:00 AM

**Peak Hour..** 07:30 AM — 08:30 AM





#### **Turning Movements Report - PM Period**

Location...... Elm Street @ Main Street East

Municipality. GRIMSBY

**Traffic Cont.** 


Major Dir.... East west

GeoID...... 01110

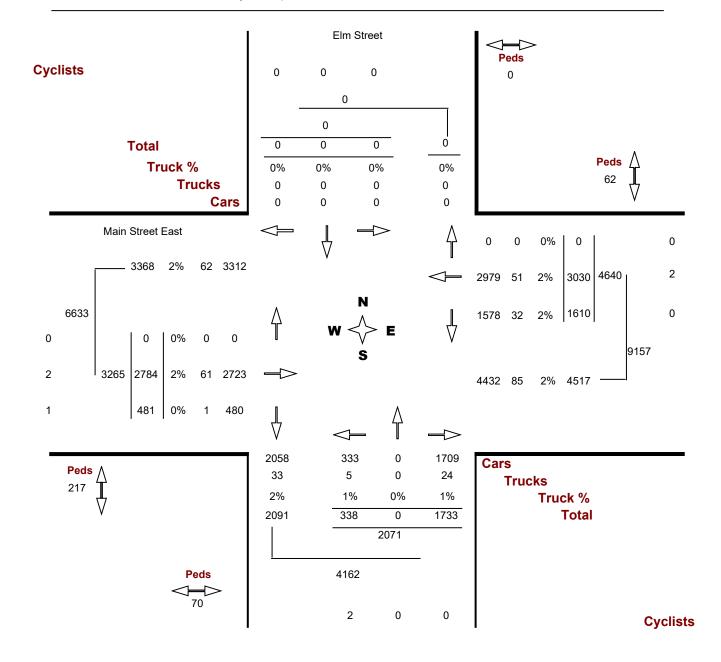
Count Date. Thursday, 11 April, 2019

**Count Time.** 03:00 PM — 06:00 PM

**Peak Hour..** 03:00 PM — 04:00 PM






# Turning Movement Count Report Full Study

Location..... Elm Street @ Main Street East

Municipality...... GRIMSBY

**GeoID......** 01110

Count Date...... Thursday, 11 April, 2019



Friday, March 12, 2021 Page 1 of 1



## Turning Movement Count - Details Report (15 min)

Location..... Elm Street @ Main Street East

Municipality..... GRIMSBY

Count Date...... Thursday, April 11, 2019

|               |    |    |         |         | E   | Elm Stre | eet |       |        |     |     |     |         |        | Main S | treet E | ast |         |        |     |
|---------------|----|----|---------|---------|-----|----------|-----|-------|--------|-----|-----|-----|---------|--------|--------|---------|-----|---------|--------|-----|
|               |    | 1  | North A | pproacl | h   |          |     | South | Approa | ach |     | I   | East Ap | proach |        |         | Wes | t Appro | oach   |     |
|               | LT | TH | RT      | U-Turn  | TOT | LT       | TH  | RT    | U-Turn | TOT | LT  | TH  | RT      | U-Turn | TOT    | LT      | TH  | RT      | U-Turn | TOT |
| 07:00 07:15   | 0  | 0  | 0       | 0       | 0   | 5        | 0   | 36    | 0      | 41  | 40  | 90  | 0       | 0      | 130    | 0       | 70  | 3       | 0      | 73  |
| 07:15 07:30   | 0  | 0  | 0       | 0       | 0   | 5        | 0   | 30    | 0      | 35  | 39  | 79  | 0       | 0      | 118    | 0       | 49  | 4       | 0      | 53  |
| 07:30 07:45   | 0  | 0  | 0       | 0       | 0   | 8        | 0   | 28    | 0      | 36  | 57  | 93  | 0       | 0      | 150    | 0       | 51  | 9       | 0      | 60  |
| 07:45 08:00   | 0  | 0  | 0       | 0       | 0   | 8        | 0   | 43    | 0      | 51  | 72  | 112 | 0       | 0      | 184    | 0       | 76  | 13      | 0      | 89  |
| Hourly Total  | 0  | 0  | 0       | 0       | 0   | 26       | 0   | 137   | 0      | 163 | 208 | 374 | 0       | 0      | 582    | 0       | 246 | 29      | 0      | 275 |
| 08:00 08:15   | 0  | 0  | 0       | 0       | 0   | 2        | 0   | 52    | 0      | 54  | 48  | 93  | 0       | 0      | 141    | 0       | 104 | 13      | 0      | 117 |
| 08:15 08:30   | 0  | 0  | 0       | 0       | 0   | 6        | 0   | 43    | 0      | 49  | 43  | 89  | 0       | 0      | 132    | 0       | 72  | 6       | 0      | 78  |
| 08:30 08:45   | 0  | 0  | 0       | 0       | 0   | 6        | 0   | 29    | 0      | 35  | 34  | 86  | 0       | 0      | 120    | 0       | 68  | 12      | 0      | 80  |
| 08:45 09:00   | 0  | 0  | 0       | 0       | 0   | 7        | 0   | 36    | 0      | 43  | 41  | 85  | 0       | 0      | 126    | 0       | 64  | 8       | 0      | 72  |
| Hourly Total  | 0  | 0  | 0       | 0       | 0   | 21       | 0   | 160   | 0      | 181 | 166 | 353 | 0       | 0      | 519    | 0       | 308 | 39      | 0      | 347 |
| 11:00 11:15   | 0  | 0  | 0       | 0       | 0   | 11       | 0   | 52    | 0      | 63  | 38  | 103 | 0       | 0      | 141    | 0       | 84  | 26      | 0      | 110 |
| 11:15 11:30   | 0  | 0  | 0       | 0       | 0   | 5        | 0   | 45    | 0      | 50  | 69  | 92  | 0       | 0      | 161    | 0       | 95  | 12      | 0      | 107 |
| 11:30 11:45   | 0  | 0  | 0       | 0       | 0   | 9        | 0   | 54    | 0      | 63  | 58  | 106 | 0       | 0      | 164    | 0       | 76  | 17      | 0      | 93  |
| 11:45 12:00   | 0  | 0  | 0       | 0       | 0   | 16       | 0   | 59    | 0      | 75  | 67  | 106 | 0       | 0      | 173    | 0       | 84  | 26      | 0      | 110 |
| Hourly Total  | 0  | 0  | 0       | 0       | 0   | 41       | 0   | 210   | 0      | 251 | 232 | 407 | 0       | 0      | 639    | 0       | 339 | 81      | 0      | 420 |
| 12:00 12:15   | 0  | 0  | 0       | 0       | 0   | 18       | 0   | 45    | 0      | 63  | 53  | 78  | 0       | 0      | 131    | 0       | 103 | 13      | 0      | 116 |
| 12:15 12:30   | 0  | 0  | 0       | 0       | 0   | 18       | 0   | 62    | 0      | 80  | 54  | 80  | 0       | 0      | 134    | 0       | 77  | 18      | 0      | 95  |
| 12:30 12:45   | 0  | 0  | 0       | 0       | 0   | 14       | 0   | 56    | 0      | 70  | 68  | 99  | 0       | 0      | 167    | 0       | 71  | 14      | 0      | 85  |
| 12:45 13:00   | 0  | 0  | 0       | 0       | 0   | 20       | 0   | 76    | 0      | 96  | 56  | 104 | 0       | 0      | 160    | 0       | 70  | 21      | 0      | 91  |
| Hourly Total  | 0  | 0  | 0       | 0       | 0   | 70       | 0   | 239   | 0      | 309 | 231 | 361 | 0       | 0      | 592    | 0       | 321 | 66      | 0      | 387 |
| 13:00 13:15   | 0  | 0  | 0       | 0       | 0   | 14       | 0   | 56    | 0      | 70  | 63  | 100 | 0       | 0      | 163    | 0       | 87  | 21      | 0      | 108 |
| 13:15   13:30 | 0  | 0  | 0       | 0       | 0   | 7        | 0   | 57    | 0      | 64  | 63  | 83  | 0       | 0      | 146    | 0       | 100 | 15      | 0      | 115 |
| 13:30 13:45   | 0  | 0  | 0       | 0       | 0   | 6        | 0   | 47    | 0      | 53  | 47  | 85  | 0       | 0      | 132    | 0       | 104 | 16      | 0      | 120 |
| 13:45 14:00   | 0  | 0  | 0       | 0       | 0   | 11       | 0   | 62    | 0      | 73  | 54  | 91  | 0       | 0      | 145    | 0       | 86  | 11      | 0      | 97  |
| Hourly Total  | 0  | 0  | 0       | 0       | 0   | 38       | 0   | 222   | 0      | 260 | 227 | 359 | 0       | 0      | 586    | 0       | 377 | 63      | 0      | 440 |
| 15:00 15:15   | 0  | 0  | 0       | 0       | 0   | 11       | 0   | 87    | 0      | 98  | 47  | 119 | 0       | 0      | 166    | 0       | 96  | 21      | 0      | 117 |
| 15:15 15:30   | 0  | 0  | 0       | 0       | 0   | 22       | 0   | 75    | 0      | 97  | 51  | 93  | 0       | 0      | 144    | 0       | 97  | 26      | 0      | 123 |
| 15:30 15:45   | 0  | 0  | 0       | 0       | 0   | 18       | 0   | 77    | 0      | 95  | 57  | 99  | 0       | 0      | 156    | 0       | 122 | 19      | 0      | 141 |
| 15:45 16:00   | 0  | 0  | 0       | 0       | 0   | 15       | 0   | 82    | 0      | 97  | 42  | 107 | 0       | 0      | 149    | 0       | 109 | 18      | 0      | 127 |
| Hourly Total  | 0  | 0  | 0       | 0       | 0   | 66       | 0   | 321   | 0      | 387 | 197 | 418 | 0       | 0      | 615    | 0       | 424 | 84      | 0      | 508 |
| 16:00 16:15   | 0  | 0  | 0       | 0       | 0   | 10       | 0   | 73    | 0      | 83  | 49  | 119 | 0       | 0      | 168    | 0       | 95  | 14      | 0      | 109 |

Friday, March 12, 2021 Page 1 of 2

Elm Street Main Street East

|              |    | 1  | North A | pproacl | า   |     |    | South | Approa | ach  |      | 1    | East Ap | proach |      |    | Wes  | t Appro | oach   |      |
|--------------|----|----|---------|---------|-----|-----|----|-------|--------|------|------|------|---------|--------|------|----|------|---------|--------|------|
| Time Period  | LT | TH | RT      | U-Turn  | TOT | LT  | TH | RT    | U-Turn | TOT  | LT   | TH   | RT      | U-Turn | TOT  | LT | TH   | RT      | U-Turn | TOT  |
| 16:15 16:30  | 0  | 0  | 0       | 0       | 0   | 10  | 0  | 66    | 0      | 76   | 58   | 115  | 0       | 0      | 173  | 0  | 110  | 18      | 0      | 128  |
| 16:30 16:45  | 0  | 0  | 0       | 0       | 0   | 9   | 0  | 58    | 0      | 67   | 45   | 91   | 0       | 0      | 136  | 0  | 111  | 9       | 0      | 120  |
| 16:45 17:00  | 0  | 0  | 0       | 0       | 0   | 12  | 0  | 59    | 0      | 71   | 41   | 107  | 0       | 0      | 148  | 0  | 108  | 22      | 0      | 130  |
| Hourly Total | 0  | 0  | 0       | 0       | 0   | 41  | 0  | 256   | 0      | 297  | 193  | 432  | 0       | 0      | 625  | 0  | 424  | 63      | 0      | 487  |
| 17:00 17:15  | 0  | 0  | 0       | 0       | 0   | 11  | 0  | 60    | 0      | 71   | 38   | 81   | 0       | 0      | 119  | 0  | 89   | 18      | 0      | 107  |
| 17:15 17:30  | 0  | 0  | 0       | 0       | 0   | 7   | 0  | 41    | 0      | 48   | 44   | 77   | 0       | 0      | 121  | 0  | 91   | 12      | 0      | 103  |
| 17:30 17:45  | 0  | 0  | 0       | 0       | 0   | 13  | 0  | 50    | 0      | 63   | 34   | 74   | 0       | 0      | 108  | 0  | 75   | 13      | 0      | 88   |
| 17:45 18:00  | 0  | 0  | 0       | 0       | 0   | 4   | 0  | 37    | 0      | 41   | 40   | 94   | 0       | 0      | 134  | 0  | 90   | 13      | 0      | 103  |
| Hourly Total | 0  | 0  | 0       | 0       | 0   | 35  | 0  | 188   | 0      | 223  | 156  | 326  | 0       | 0      | 482  | 0  | 345  | 56      | 0      | 401  |
| Grand Total  | 0  | 0  | 0       | 0       | 0   | 338 | 0  | 1733  | 0      | 2071 | 1610 | 3030 | 0       | 0      | 4640 | 0  | 2784 | 481     | 0      | 3265 |
| Truck %      | 0% | 0% | 0%      | 0%      | 0%  | 1%  | 0% | 1%    | 0%     | 1%   | 2%   | 2%   | 0%      | 0%     | 2%   | 0% | 2%   | 0%      | 0%     | 2%   |

Friday, March 12, 2021 Page 2 of 2

|            |                      | D:-+          |                  | Detterm           |        |         |              |                    |     |
|------------|----------------------|---------------|------------------|-------------------|--------|---------|--------------|--------------------|-----|
| Highway    | Location Description | Dist.<br>(KM) | Vaar             | Pattern           | AADT   | CADT    | CANAIDT      | MADT               | AD  |
| півпімау   | Location Description | (KIVI)        | <b>Year</b> 2014 | <b>Type</b><br>IC | AADT   | 112,400 | <b>SAWDT</b> | <b>WADT</b> 90,100 |     |
|            |                      |               | 2014             | IC                | -      | -       | 113,400      | 91,800             | I - |
|            |                      |               | 2013             | IC                |        | 116,600 |              | 93,500             |     |
| QEW        | ONTARIO ST IC-64     | 3.8           | 1988             | IC                | 50,300 |         |              | 42,200             |     |
| QLVV       | ONTARIO ST IC-04     | 3.0           | 1989             | IC                | 52,400 | -       | -            | 45,000             |     |
|            |                      |               | 1990             | IC                | 55,500 | -       | 1            | 48,200             |     |
|            |                      |               | 1991             | IC                | 57,200 | -       | 1            | 49,700             |     |
|            |                      |               | 1992             | IC                | 57,000 | -       |              | 48,400             |     |
|            |                      |               | 1993             | IC                | 57,600 | -       | -            | 50,100             |     |
|            |                      |               | 1994             | IC                | 63,900 | -       | 1            | 53,900             |     |
|            |                      |               | 1995             | IC                | 66,700 | -       | 1            | 56,200             |     |
|            |                      |               | 1996             | IC                | 69,500 | -       | -            | 58,600             |     |
|            |                      |               | 1997             | IC                | 72,200 |         |              | 60,900             |     |
|            |                      |               | 1998             | IC                | 75,000 | -       | 1            | 63,200             |     |
|            |                      |               | 1999             | IC                | 73,400 | 92,500  | 88,900       | 61,900             | 0.2 |
|            |                      |               | 2000             | IC                | 74,900 | 94,400  | 90,700       | 63,200             | 0.3 |
|            |                      |               | 2001             | IC                | 76,400 | 96,300  | 92,400       | 64,200             | 0.2 |
|            |                      |               | 2002             | IC                | 77,900 | 98,300  | 94,300       | 65,800             | 0.3 |
|            |                      |               | 2003             | IC                | 78,300 | 98,700  | 94,700       | 66,600             | 0.3 |
|            |                      |               | 2004             | IC                | 81,100 | 100,800 | 96,900       | 68,800             | 0.2 |
|            |                      |               | 2005             | IC                | 83,100 | 103,000 | 98,800       | 70,500             | 0.3 |
|            |                      |               | 2006             | IC                | 84,400 | 104,500 | 100,200      | 71,600             | 0.2 |
|            |                      |               | 2007             | IC                | 85,600 | 106,000 | 105,100      | 72,600             | 0.2 |
|            |                      |               | 2008             | IC                | 87,800 | 108,700 | 106,500      | 74,600             | 0.2 |
|            |                      |               | 2009             | IC                | -      | 109,500 | -            | 76,000             |     |
|            |                      |               | 2010             | IC                | -      | 109,900 | -            | 76,700             |     |
|            |                      |               | 2011             | IC                | -      | 112,400 | -            | 78,300             |     |
|            |                      |               | 2012             | IC                |        |         | 112,400      | 79,600             |     |
|            |                      |               | 2013             | IC                | -      | -       | 119,900      | 80,900             |     |
|            |                      |               | 2014             | IC                |        | 107,400 |              | 86,100             |     |
|            |                      |               | 2015             | IC                | -      | 109,100 | -            | 87,500             |     |
|            |                      |               | 2016             | IC                | -      |         | 109,800      | 88,800             |     |
| <b>QEW</b> | BARTLETT AV IC-68    | 2.5           | 1988             | CTR               | 52,600 | 68,300  | 64,100       | 44,100             | 0.5 |

| Highway   Location Description   CKM   Year   Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                      |      |      |     |        |         |         |        |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------|------|------|-----|--------|---------|---------|--------|-----|
| Mighway   Caction Description   CKM)   Vam   CKM)   Vam   Caction Description   CKM)   CKM)   CKM   CKM)   CKM   CKM)   CKM   CKM)   CKM   CKM)   CKM   CKM   CKM)   CKM   CKM   CKM)   CKM    |         |                      |      |      |     |        |         |         |        |     |
| 1989   CTR   54,900   66,400   47,200   0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                      |      |      |     |        |         |         |        |     |
| 1990   CTR   57,100   71,300   67,300   49,600   0.5     1991   CTR   58,800   70,4000   73,500   51,100   0.7     1992   CTR   58,800   71,500   69,600   48,900   0.3     1993   CTR   58,600   71,500   69,600   48,900   0.3     1994   CTR   58,500   71,500   69,600   48,900   0.3     1995   CTR   58,500   71,500   69,200   50,600   0.4     1995   CTR   58,500   71,500   78,500   53,800   53,800   0.5     1996   CTR   70,200   89,900   86,700   59,400   0.3     1997   CTR   70,500   90,200   86,700   59,400   0.3     1998   CTR   70,500   90,200   86,700   59,400   0.3     1999   CTR   70,500   90,200   86,700   59,400   0.3     1999   CTR   70,500   90,200   60,500   64,600   0.2     2000   CTR   76,400   96,300   92,500   64,600   0.2     2000   CTR   76,400   96,300   92,500   64,600   0.2     2001   CTR   81,800   103,100   99,000   69,500   64,600   0.4     2003   CTR   81,800   103,100   99,000   69,500   64,600   0.4     2004   CTR   84,100   104,100   99,800   71,400   0.3     2005   CTR   84,100   104,100   99,800   71,400   0.3     2006   CTR   84,100   104,100   99,800   71,400   0.3     2009   CTR   91,500   112,000   107,900   74,500   0.3     2009   CTR   91,500   110,000   77,700   0.1     2011   CTR   85,00   10,600   77,400   0.1     2012   CTR   85,00   10,7800   10,7800   77,400   0.1     2013   CTR   85,00   10,7800   10,600   77,400   0.1     2014   CTR   85,00   10,7800   10,800   77,400   0.1     2015   CTR   85,00   10,7800   10,800   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77,000   77, | Highway | Location Description | (KM) |      |     |        |         |         |        |     |
| 1991   CTR   58,800   74,000   73,500   51,100   0.7   1992   CTR   57,600   72,500   69,600   0.4   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   |         |                      |      |      |     | -      |         | -       | -      |     |
| 1992   CTR   57,600   72,500   69,600   48,900   0.3     1993   CTR   58,200   74,500   69,600   0.4     1994   CTR   58,200   74,500   69,200   50,600   0.4     1995   CTR   63,800   81,700   78,500   53,800   0.5     1996   CTR   70,200   89,900   86,300   59,200   0.4     1997   CTR   70,500   90,200   86,700   59,400   0.3     1998   CTR   73,900   93,900   90,200   62,300   0.3     1999   CTR   75,900   95,700   91,900   60,200   0.3     1999   CTR   76,400   96,300   92,500   64,400   0.3     2001   CTR   76,400   96,300   92,500   64,000   0.2     2002   CTR   80,100   101,100   96,900   67,600   0.4     2003   CTR   81,800   101,100   96,900   67,600   0.4     2004   CTR   83,400   105,800   101,600   72,200   0.3     2005   CTR   84,900   105,200   101,000   72,000   0.3     2006   CTR   87,900   108,900   107,900   74,500   0.3     2007   CTR   87,400   108,200   101,000   72,000   0.3     2008   CTR   87,400   108,200   101,000   70,000   0.3     2009   CTR   91,100   110,900   106,600   74,300   0.3     2010   CTR   91,100   110,900   106,600   77,000   0.4     2011   CTR   95,100   110,000   106,600   77,000   0.4     2012   CTR   86,500   96,000   92,500   77,000   0.4     2013   CTR   98,100   110,900   106,600   77,000   0.4     2014   CTR   98,100   110,900   106,600   77,000   0.4     2015   CTR   88,400   107,800   108,000   87,300   0.5     2016   CTR   98,100   108,000   108,000   87,300   0.5     2016   CTR   98,100   108,000   108,000   87,300   0.5     2016   CTR   98,100   108,000   108,000   87,300   0.5     2016   CTR   98,300   108,000   108,000   108,000   87,300   0.5     2016   CTR   98,300   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108 |         |                      |      | 1990 | CTR | 57,100 | 71,300  | 67,300  | 49,600 | 0.5 |
| 1993   CTR   58,200   71,500   69,200   50,600   0.4     1994   CTR   58,500   74,900   71,400   49,300   0.5     1995   CTR   70,200   89,900   86,300   53,800   0.5     1996   CTR   70,500   90,200   86,700   59,400   0.3     1997   CTR   70,500   90,200   86,700   59,400   0.3     1998   CTR   75,900   95,700   91,900   62,300   0.3     1999   CTR   75,900   95,700   91,900   64,000   0.2     2000   CTR   76,400   96,300   92,500   64,400   0.3     2001   CTR   78,700   99,200   95,200   66,100   0.2     2002   CTR   80,100   101,100   99,900   69,500   0.4     2003   CTR   81,800   103,100   99,000   69,500   0.4     2004   CTR   85,100   104,100   99,900   69,500   0.4     2005   CTR   84,400   105,200   101,600   72,200   0.3     2006   CTR   84,400   105,200   101,600   72,200   0.3     2007   CTR   87,400   108,200   107,900   74,500   0.2     2008   CTR   87,400   108,200   107,900   74,500   0.2     2009   CTR   91,500   110,000   106,600   77,700   0.1     2010   CTR   95,100   110,000   106,600   77,700   0.1     2011   CTR   95,100   110,000   106,000   77,700   0.1     2012   CTR   86,500   96,000   92,500   87,900   N/A     2013   CTR   96,500   107,800   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,000   108,0 |         |                      |      | 1991 | CTR | 58,800 | 74,000  | 73,500  | 51,100 | 0.7 |
| 1994   CTR   58,500   74,900   71,400   49,300   0.5     1995   CTR   63,800   81,700   78,500   53,800   0.5     1996   CTR   70,200   89,900   86,300   59,400   0.3     1997   CTR   70,500   90,200   68,700   59,400   0.3     1998   CTR   75,900   95,700   91,900   64,000   0.3     1999   CTR   76,400   96,300   92,500   64,000   0.3     2000   CTR   76,400   96,300   92,500   64,000   0.3     2001   CTR   78,700   99,200   95,200   66,100   0.2     2002   CTR   81,800   103,100   99,000   67,600   0.4     2003   CTR   81,800   103,100   99,000   67,600   0.4     2004   CTR   85,100   101,100   99,000   67,600   0.4     2005   CTR   84,900   105,200   101,600   72,200   0.3     2006   CTR   84,900   105,200   101,600   72,200   0.3     2007   CTR   87,400   104,100   99,800   74,400   0.3     2008   CTR   87,400   108,900   107,900   74,400   0.3     2009   CTR   87,400   108,900   107,900   74,400   0.3     2009   CTR   91,100   110,900   106,600   74,300   0.3     2009   CTR   91,500   110,900   106,600   74,000   0.3     2009   CTR   81,800   103,700   106,000   74,000   0.3     2009   CTR   81,800   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   81,700   |         |                      |      | 1992 | CTR | 57,600 | 72,500  | 69,600  | 48,900 | 0.3 |
| 1995   CTR   63,800   81,700   78,500   53,800   0.5     1996   CTR   70,200   89,900   86,300   59,200   0.4     1997   CTR   70,500   90,200   86,700   59,400   0.3     1998   CTR   75,900   93,900   90,200   62,300   0.3     1999   CTR   75,900   95,700   91,900   62,300   0.3     1999   CTR   76,400   96,300   92,500   66,100   0.2     2000   CTR   76,400   96,300   92,500   66,100   0.2     2001   CTR   80,100   101,100   96,900   67,600   0.4     2003   CTR   81,800   103,100   99,000   67,600   0.4     2004   CTR   88,100   105,800   101,600   72,000   0.3     2005   CTR   84,900   105,200   101,000   72,000   0.3     2006   CTR   84,900   105,200   101,000   72,000   0.3     2007   CTR   87,900   108,900   107,900   74,500   0.2     2008   CTR   87,400   108,200   106,100   74,500   0.3     2009   CTR   91,500   110,000   107,600   77,400   0.1     2010   CTR   91,500   110,000   107,600   77,400   0.1     2011   CTR   95,100   110,000   107,600   77,400   0.1     2012   CTR   86,500   96,000   92,500   77,000   0.1     2013   CTR   95,500   107,000   106,200   87,300   N/A     2014   CTR   98,100   108,900   108,900   87,300   N/A     2015   CTR   88,400   107,800   108,900   87,300   N/A     2016   CTR   93,300   121,200   122,200   84,400   N/A     2016   CTR   93,300   62,600   59,600   87,300   N/A     2017   CTR   83,100   108,900   108,900   87,300   N/A     2018   CTR   88,400   107,800   108,900   87,300   N/A     2019   CTR   83,400   107,800   87,300   N/A     2019   CTR   83,400   107,800   87,300   N/A     2019   CTR   83,400   107,800   87,300   87,300   N/A     2019   CTR   83,400   107,800   87,300   87,300   N/A     2019   CTR   83,400   107,800   87,300   87,300   N/A     2010   CTR   83,400   107,800   87,300   87,300   87,300   87,300   87,300   87,300   87,300   87,300   87,300   87,300   87,300   87,300   87,300   87,300   87,300   87,300   87,300   87,300   87,300   87,300   87,300   87,300   87,300   87,300   87,300   87,300   87,300   87,300   87,300   87,300   87,300   87,300 |         |                      |      | 1993 | CTR | 58,200 | 71,500  | 69,200  | 50,600 | 0.4 |
| 1996   CTR   70,200   89,900   86,300   59,200   0.4     1997   CTR   70,500   93,900   90,200   62,300   0.3     1998   CTR   75,900   95,700   91,900   62,300   0.2     2000   CTR   78,700   99,200   95,700   64,000   0.2     2001   CTR   78,700   99,200   95,200   66,000   0.2     2002   CTR   80,100   101,100   96,900   67,600   0.2     2003   CTR   81,800   103,100   99,000   67,600   0.4     2004   CTR   85,100   103,100   99,000   67,600   0.4     2005   CTR   84,900   105,200   101,000   72,200   0.3     2006   CTR   87,900   108,900   101,000   71,400   0.3     2007   CTR   87,900   108,900   107,600   71,400   0.5     2008   CTR   87,400   108,200   107,600   71,400   0.5     2009   CTR   91,500   110,000   107,600   77,400   0.1     2011   CTR   95,100   116,000   111,300   80,800   N/A     2012   CTR   86,500   96,000   92,500   77,000   0.1     2013   CTR   95,100   116,000   111,300   80,800   N/A     2014   CTR   95,100   116,000   111,300   80,800   N/A     2015   CTR   88,400   107,800   108,900   87,300   N/A     2016   CTR   98,100   108,900   108,900   87,300   N/A     2016   CTR   98,100   108,900   108,900   87,300   N/A     2016   CTR   98,100   108,900   108,900   87,300   N/A     2017   CTR   98,100   108,900   108,900   87,300   N/A     2018   CTR   98,100   108,900   108,900   87,300   N/A     2019   CTR   98,100   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108,900   108 |         |                      |      | 1994 | CTR | 58,500 | 74,900  | 71,400  | 49,300 | 0.5 |
| Recommendant   1997   CTR   70,500   90,200   86,700   59,400   0.3     1998   CTR   73,900   93,900   90,200   62,300   0.2     1999   CTR   76,400   95,700   95,700   95,000   64,400   0.2     2000   CTR   76,400   96,300   92,500   64,400   0.2     2001   CTR   76,400   96,300   92,500   64,600   0.2     2002   CTR   80,100   101,100   96,900   67,600   0.4     2003   CTR   81,800   103,100   99,000   69,500   0.4     2004   CTR   85,100   105,800   101,600   72,200   0.3     2005   CTR   84,900   105,200   101,000   72,000   0.3     2006   CTR   84,900   105,200   101,000   72,000   0.3     2007   CTR   87,900   108,000   107,600   74,500   0.2     2008   CTR   87,900   108,000   107,600   74,500   0.2     2009   CTR   91,500   116,000   107,600   77,700   0.1     2010   CTR   91,100   110,000   106,600   77,400   0.1     2011   CTR   95,100   116,000   116,000   77,700   0.1     2012   CTR   86,500   96,000   92,500   77,000   N/A     2013   CTR   88,400   107,800   108,000   87,300   N/A     2014   CTR   98,100   108,000   108,000   87,300   N/A     2015   CTR   88,400   107,800   108,000   87,300   N/A     2016   CTR   99,300   21,200   22,200   84,400   N/A     2016   CTR   99,300   21,200   22,200   84,400   N/A     2016   CTR   99,300   21,200   22,200   84,400   N/A     2016   CTR   99,300   21,200   59,600   45,900   0.0     2010   CTR   99,300   21,200   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000   20,000 |         |                      |      | 1995 | CTR | 63,800 | 81,700  | 78,500  | 53,800 | 0.5 |
| 1998   CTR   73,900   93,900   90,200   62,300   0.3   1999   CTR   75,900   95,700   91,900   64,000   0.2   2000   CTR   76,400   96,300   92,500   64,000   0.2   2000   CTR   76,700   99,200   95,200   66,100   0.2   2002   CTR   80,100   101,100   96,900   67,600   0.4   2003   CTR   81,800   103,100   99,000   69,500   0.4   2004   CTR   83,100   104,100   99,000   72,200   0.3   2005   CTR   84,900   105,200   101,600   72,200   0.3   2005   CTR   84,900   104,100   99,800   71,400   0.2   2007   CTR   87,900   108,900   107,900   74,500   0.2   2008   CTR   87,400   108,900   106,100   74,300   0.3   2006   CTR   81,800   106,900   74,500   0.2   2008   CTR   81,800   106,900   77,400   0.1   2011   CTR   91,100   110,900   106,600   77,400   0.1   2011   CTR   95,100   110,900   106,600   77,400   0.1   2011   CTR   98,100   108,900   108,000   87,300   N/A   2014   CTR   88,800   107,800   108,000   87,300   N/A   2014   CTR   88,800   107,8 |         |                      |      | 1996 | CTR | 70,200 | 89,900  | 86,300  | 59,200 | 0.4 |
| 1999   CTR   75,900   95,700   91,900   64,000   0.2     2000   CTR   76,400   96,300   92,500   64,400   0.3     2001   CTR   78,700   99,200   95,200   66,100   0.4     2002   CTR   80,100   101,100   99,000   67,600   0.4     2003   CTR   81,800   103,100   99,000   67,600   0.4     2004   CTR   85,100   105,800   101,600   72,200   0.3     2005   CTR   84,900   105,200   101,000   72,000   0.3     2006   CTR   84,100   104,100   99,800   71,400   0.2     2007   CTR   87,900   108,900   107,900   74,500   0.2     2008   CTR   87,400   108,900   109,900   74,500   0.3     2009   CTR   87,400   108,900   109,000   74,500   0.3     2009   CTR   87,400   108,000   109,000   74,500   0.3     2009   CTR   91,500   112,000   106,600   74,300   0.3     2010   CTR   95,100   116,000   111,300   80,800   N/A     2011   CTR   96,500   92,500   0.4     2013   CTR   96,500   107,100   106,200   85,900   N/A     2014   CTR   98,100   108,900   108,000   87,300   N/A     2015   CTR   88,400   107,400   108,000   87,300   N/A     2016   CTR   99,300   121,200   122,200   84,400   N/A     2017   CTR   88,400   108,700   108,000   75,100   N/A     2018   CTR   99,300   121,200   122,200   84,400   N/A     2019   CTR   95,500   66,500   66,500   60,000   42,300   1.0     2019   CTR   95,500   66,500   66,500   44,600   0.7     2019   CTR   95,500   66,500   66,500   66,500   44,600   0.7     2019   CTR   95,500   66,500   66,500   66,000   45,900   1.0     2019   CTR   95,500   66,500   66,500   66,000   66,000   60,500   44,600   0.7     2019   CTR   95,500   66,500   66,500   66,500   66,000   60,500   44,600   0.7     2019   CTR   |         |                      |      | 1997 | CTR | 70,500 | 90,200  | 86,700  | 59,400 | 0.3 |
| Record   R |         |                      |      | 1998 | CTR | 73,900 | 93,900  | 90,200  | 62,300 | 0.3 |
| Record   R |         |                      |      | 1999 | CTR | 75,900 | 95,700  | 91,900  | 64,000 | 0.2 |
| Recommendant   Reco |         |                      |      | 2000 | CTR | 76,400 | 96,300  | 92,500  | 64,400 | 0.3 |
| Second Process of Content of Co |         |                      |      | 2001 | CTR | 78,700 | 99,200  | 95,200  | 66,100 | 0.2 |
| Record   R |         |                      |      | 2002 | CTR | 80,100 | 101,100 | 96,900  | 67,600 | 0.4 |
| Second Parison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                      |      | 2003 | CTR | 81,800 | 103,100 | 99,000  | 69,500 | 0.4 |
| Second Part    |         |                      |      | 2004 | CTR | 85,100 | 105,800 | 101,600 | 72,200 | 0.3 |
| Record   R |         |                      |      | 2005 | CTR |        |         |         | 72,000 | 0.3 |
| QEW   MAPLE AV IC-71   CTR   MAPLE AV IC-71   CTR   MAPLE AV IC-71   CTR   MAPLE AV IC-71   CTR   CT |         |                      |      | 2006 | CTR | 84,100 | 104,100 | 99,800  | 71,400 | 0.2 |
| QEW   MAPLE AV IC-71   CTR   MAPLE AV IC-71   CTR   MAPLE AV IC-71   CTR   MAPLE AV IC-71   CTR   CT |         |                      |      | 2007 | CTR | 87,900 | 108,900 | 107,900 | 74,500 | 0.2 |
| QEW   MAPLE AV IC-71   QEW    |         |                      |      | 2008 | CTR |        |         |         |        |     |
| 2010   CTR   91,100   110,900   106,600   77,400   0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                      |      | 2009 | CTR |        |         |         | 77,700 | 0.1 |
| 2011   CTR   95,100   116,000   111,300   80,800   N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                      |      | 2010 | CTR |        |         |         | -      |     |
| 2012   CTR   86,500   96,000   92,500   77,000   N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                      |      | 2011 |     |        |         |         |        |     |
| 2013   CTR   96,500   107,100   106,200   85,900   N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                      |      | 2012 | CTR |        |         |         | -      |     |
| 2014   CTR   98,100   108,900   108,000   87,300   N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                      |      |      |     | -      |         | -       |        |     |
| 2015   CTR   88,400   107,800   108,700   75,100   N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                      |      |      |     |        |         |         |        |     |
| QEW       MAPLE AV IC-71       3.6       1988       IC       47,300       61,400       57,700       39,700       0.6         1989       IC       49,300       62,600       59,600       42,300       1.0         1990       IC       51,300       64,100       60,500       44,600       0.7         1991       IC       52,900       66,500       66,000       45,900       1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                      |      |      |     | -      |         | -       |        |     |
| QEW     MAPLE AV IC-71     3.6     1988 IC 47,300 61,400 57,700 42,300 1.0     39,700 0.6       1989 IC 49,300 62,600 1990 IC 51,300 64,100 60,500 44,600 1991 IC 52,900 66,500 66,000 45,900 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                      |      |      |     |        |         |         |        |     |
| 1989 IC 49,300 62,600 59,600 42,300 1.0<br>1990 IC 51,300 64,100 60,500 44,600 0.7<br>1991 IC 52,900 66,500 66,000 45,900 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QEW     | MAPLE AV IC-71       | 3.6  |      |     | _      |         |         |        |     |
| 1990 IC 51,300 64,100 60,500 44,600 0.7<br>1991 IC 52,900 66,500 66,000 45,900 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | - · -                |      |      |     | -      |         | -       | -      |     |
| 1991 IC 52,900 66,500 66,000 45,900 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                      |      |      |     |        |         | -       | -      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                      |      |      |     |        |         | -       |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                      |      | 1992 |     | 52,800 |         | -       | -      |     |



### **Train Count Data**

System Engineering **Engineering Services** 

1 Administration Road Concord, ON, L4K 1B9 T: 905.669.3264

F: 905.760.3406

#### TRANSMITTAL

**HGC** Engineering

Destinataire :

2000 Argentia Rd

Plaza, Suite 203, Mississauga, ON

L5N 1P7

Att'n:

Victor Garcia

vgarcia@hgcengineering.com

Project: GRM-17.19- Jordan Road, Lincoln ON

From: Expéditeur: Michael Vallins

Date:

12/18/2020

Cc:

Adjacent Development

CN via e-mail

☐ Urgent ☐ For Your Use ☐ For Review ☐ For Your Information ☐ Confidential

Re: Train Traffic Data - CN Grimsby Subdivision near GRM-17.19-Jordan Road, Lincoln ON

Please find attached the requested Train Traffic Data; this data does not reflect GO Metrolinx Traffic. The application fee in the amount of \$500.00 +HST will be invoiced.

Should you have any questions, please do not hesitate to contact the undersigned at permits.gld@cn.ca.

Sincerely,

CN Design & Construction

Michael Vallins P.Eng

Manager, Public Works- Eastern Canada

Permits.gld@cn.ca

Date: 2020/12/18 Project Number: GRM-17.19- Jordan Road, Lincoln ON

Dear Victor:

### Re: Train Traffic Data – CN Grimsby Subdivision GRM-17.19- Jordan Road, Lincoln ON

The following is provided in response to Victor's 2020/10/08 request for information regarding rail traffic in the vicinity of 2797 Red Maple Avenue in Lincoln at approximately Mile 17.19 on CN's Grimsby Subdivision.

Typical daily traffic volumes are recorded below. However, traffic volumes may fluctuate due to overall economic conditions, varying traffic demands, weather conditions, track maintenance programs, statutory holidays and traffic detours that when required may be heavy although temporary. For the purpose of noise and vibration reports, train volumes must be escalated by 2.5% per annum for a 10-year period.

Typical daily traffic volumes at this site location are as follows:

\*Maximum train speed is given in Miles per Hour

|               | 0700-2300 |             |            |            |
|---------------|-----------|-------------|------------|------------|
| Type of Train | Volumes   | Max.Consist | Max. Speed | Max. Power |
| Freight       | 4         | 140         | 60         | 1          |
| Way Freight   | 0         | 25          | 60         | 4          |
| Passenger     | 2         | 10          | 65         | 2          |

|               | 2300-0700 |             |            |               |
|---------------|-----------|-------------|------------|---------------|
| Type of Train | Volumes   | Max.Consist | Max. Speed | Max. Power    |
| Freight       | 0         | 140         | 60         | 1.1401.101101 |
| Way Freight   | 0         | 25          | 60         | 1 1           |
| Passenger     | 0         | 10          | 65         | 2             |

The volumes recorded reflect westbound and eastbound freight and passenger operations on CN's Grimsby Subdivision.

Except where anti-whistling bylaws are in effect, engine-warning whistles and bells are normally sounded at all at-grade crossings. There are two (2) at-grade crossings in the immediate vicinity of the study area at Mile 16.65 (15<sup>th</sup> Street South) and Mile 18.13 (Lynden Road). Anti-whistling bylaws are not in effect at these crossings. Please note that engine warning whistles may be sounded in cases of emergency, as a safety and or warning precaution at station locations and pedestrian crossings and occasionally for operating requirements. There is no switch in the immediate vicinity of the study area.

With respect to equipment restrictions, the gross weight of the heaviest permissible car is 286,000 lbs.

The single mainline track is considered continuously welded rail throughout the study area.

Canadian National Railway continues to be strongly opposed to locating developments near railway facilities and rights-of-way due to potential safety and environmental conflicts. Development adjacent to the Railway Right-of-Way is not appropriate without sound impact mitigation measures to reduce the incompatibility. For confirmation of the applicable rail noise, vibration and safety standards, Adjacent Development, Canadian National Railway Properties at <a href="mailto:Proximity@cn.ca">Proximity@cn.ca</a> should be contacted directly.

I trust the above information will satisfy your current request.

Sincerely,

Michael Vallins P.Eng

Manager, Public Works- Eastern Canada

Permits.gld@cn.ca